

CENTRE DE FONTENAY-AUX-ROSES

Service de Protection contre les Rayonnements et de l'Environnement

Vue aérienne du CEA/FAR en 1949

RESULTATS DES CONTROLES DE L'ENVIRONNEMENT

BILAN DES TRANSFERTS LIQUIDES ET DES REJETS GAZEUX

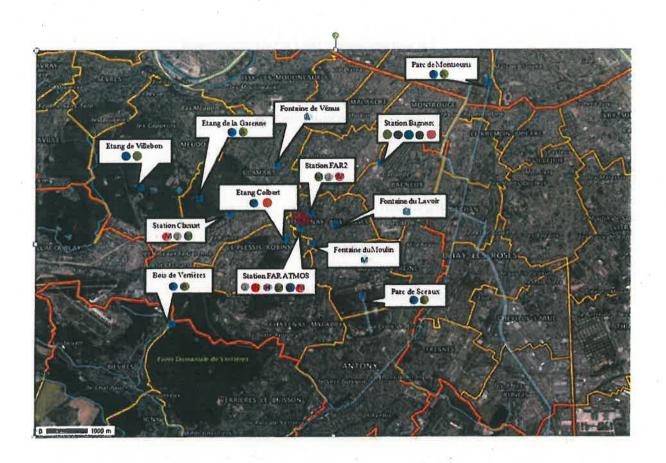
MAINTENANCE DE L'APPAREILLAGE SEPTEMBRE 2015

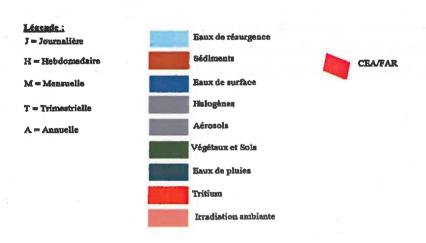
SOMMAIRE

La surveillance de l'environnement

⇒ Plan de situation	Page 3
⇒ Activité moyenne mensuelle des eaux de l'égout collecteur	Page 4
⇒ Contrôle du pH des eaux de l'égout collecteur	Page 5
⇔ Contrôle des boues de l'égout collecteur	Page 6
⇒ Analyse chimique des eaux des émissaires	Page 7
⇒ Contrôle des eaux de l'étang Colbert	Page 8
⇒ Contrôle des sédiments de l'étang Colbert	Page 9
⇒ Contrôle des eaux de résurgence	Page 10
⇒ Contrôle de la nappe phréatique	Page 11
Activité volumique α et β des poussières atmosphériques	Page 13
⇒ Activité volumique des précipitations atmosphériques	Page 17
⇒ Exposition ambiante	Page 18
⇒ Mesure de l'activité volumique en tritium dans l'atmosphère	Page 19
⇒ Mesure de l'activité volumique en ¹³¹ l dans l'atmosphère	Page 19
⇒ Contrôle des végétaux	Page 20

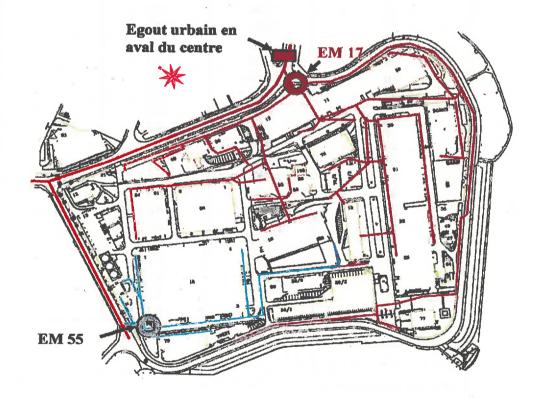
Transferts aux égouts et rejets atmosphériques


⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
⇒ Composition chimiques des effluents rejetés	Page 24


Appareiliage

⇒ CEP - Etalonnage	Page 26
⇒ Dispositif de mesure	Page 27

La Surveillance de l'environnement



ACTIVITE MOYENNE MENSUELLE DES EAUX DE L'EGOUT COLLECTEUR URBAIN

septembre 2015

MESURE		ctivité volumique oyenne mensuelle [Bq.l ⁻¹]	Limite de détection indicative [Bq.l ⁻¹]	Seuil de décision indicatif [Bq.l ⁻¹]
Radioactivité alpha	<	0,2	0,2	0,1
Radioactivité bêta	<	0,6	0,6	0,3
Radioactivité tritium	<	15	15	7,5
Volume d'effluents mesuré dans l'égout [m³]			140	00
Incertitude de mesure [m³]		140	00	

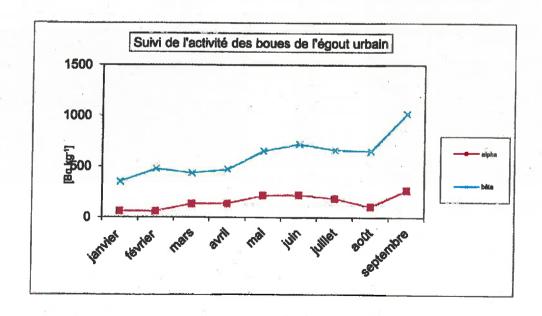
Les analyses radiologiques effectuées sur les eaux sont conformes aux normes NF ISO 10704 et NF M 60-802-3

CONTROLE DU pH DES EAUX DE L'EGOUT DU COLLECTEUR URBAIN

Date	Volume dans le	Moyenne	S'il y a lieu, valeur
Dare	collecteur [m³]	journalière du pH*	du dépassement
1	295	7,9	
2	276	8,0	
3	298	7,8	
4	269	7,4	
5	259	7,5	
6	197	7,8	
7	312	8,0	
8	329	8,0	
9	322	7,9	
10	338	7,9	
11	295	8,0	
12	1354	7,3	
13	586	7,6	240
14	542	7,7	
15	1274	7,9	
16	1210	7,9	K.
17	302	8,0	_
18	1591	8,0	
19	142	8,3	
20	168	7,7	10 2
21	406	8,1	
22	638	7,9	
23	307	8,2	
24	396	8,0	
25	290	8,2	
26	262	7,9	
27	276	7,7	
28	353	8,1	
29	360	8,1	-
30	274	·8,1	
Total mensuel [m³]	14000		
Moyenne journalière [m³]	470		

^{*} Conformément à l'arrêté d'autorisation de déversement des eaux usées non domestiques dans le réseau public d'assainissement du 1^{er} mars 2011, le pH doit être compris entre 5,5 et 8,5.

CONTROLE DES BOUES DE L'EGOUT COLLECTEUR URBAIN


septembre 2015

Matière sèche	alpha	bêta
Activité massique [Bq.kg ⁻¹]	261	1020
Limite de détection [Bq.kg ⁻¹]	23	53
Seuil de décision [Bq.kg ⁻¹]	12	27

Détermination des radionucléides

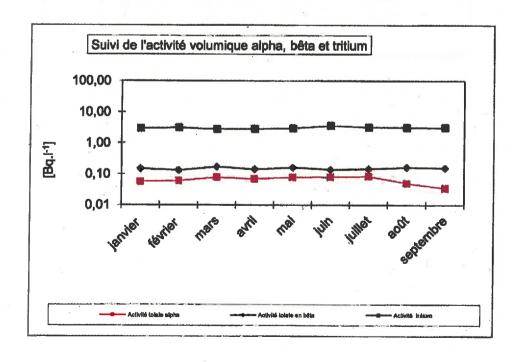
Radionucléide	Activité massique [Bq.kg ⁻¹]		Limite de détection [Bq.kg ⁻¹]	Seuil de décision [Bq.kg ⁻¹]
⁶⁰ Co	<	1,2	1,2	0,60
¹³⁷ Cs		5,6	2,4	1,2
²⁴¹ Am		5,3	3,6	1.8

La mesure de la boue est effectuée selon la norme NF M60-790 (norme sols)

ANALYSES CHIMIQUES DES EAUX D'EGOUTS PRELEVEES AU NIVEAU DES EMISSAIRES

		Emis	saire *	
			17	55
		Date de pr	rélèvement	
Paramètres	Unités	Valeurs limites	02/09/15	02/09/15
рН	1	5,5< <8,5	8,0	8,5
MES	mg/!	600	25	39
DCO	mg 02/I	2000	247	. 77
DBO5	mg 02/l	800	185	45
DCO/DBO5		2,5	1,3	1,7
Azote Kjeldhal	mg N/I	150	26	33
Phosphore total	mg P/I	50	4,8	<2,5
Hydrocarbures totaux	mg/l	10	<3	<3
Cyanures	mg/i	0,1	<0,04	<0,04
Fluorures	mg/l	15	0,59	<0,25
Fer + Aluminium	mg/l	5	<1,5	<1,5
Cuivre	mg/l	0,5	<0,13	<0,13
Zinc	mg/!	2	<0,25	<0,25
Nickel	mg/i	0,5	<0,25	<0,25
Plomb	mg/l	0,5	<0,13	<0,13
Chrome total	mg/l	0,5	<0,13	<0,13
Cadmium	mg/!	0,2	<0,13	<0,13
Agents de surface anioniques	mg/l	30		
Chrome hexavalent	mg/l	0,1		
Sulfates	mg/l	2000		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Argent	mg/l	0,5	Analyses semestrielles	Analyses semestrielles
Arsenic	mg/l	0,05		
Etain	mg/l	2		
Manganèse	mg/l	1	The state of the s	Charles of the state of
Indice phénol	mg/l	0,3		

^{*} Résultats sur échantillon 24h mensuel, conformément à l'arrêté du 1er mars 2011


CONTROLE DES EAUX DE SURFACE DE L'ETANG COLBERT

septembre 2015

	Activité volumique [Bq.l ⁻¹]			
рН	40 _K 3 _H		Activité totale	
	³ H	~K	bêta	alpha
7,6	< 6,3	0,10	0,16	0,03
	q.j ⁻¹]	indicative [B	ite de détection	Limi
	7	0,03	0,08	0,04
	-1	indicatif [Bq.	auil de décision	Se
	3,5	0,02	0,04	0,02

Détermination des radionucléides :

Radionucléide	Activité volumique [Bq.l ⁻¹]	Limite de détection [Bq.l ⁻¹]	Seuil de décision [Bq.l ⁻¹]
¹³⁷ Cs	< 0,12	0,12	0,06
²⁴¹ Am	< 0,43	0,43	0,22

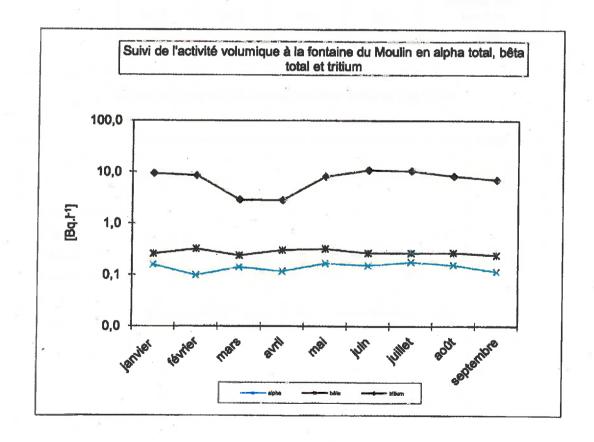
CONTROLE DES SEDIMENTS DE L'ETANG COLBERT

septembre 2015

Matière sèche	alpha	bêta
Activité massique* [Bq.kg ⁻¹]	1	. 1
Limite de détection [Bq.kg ⁻¹]	1	1
Seuil de décision [Bq.kg ⁻¹]	. /	1

Détermination des radionucléides

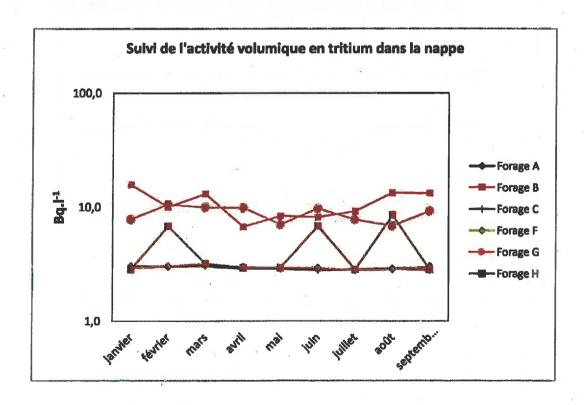
Radionucléide	Activité massique* [Bq.kg ⁻¹]	Limite de détection [Bq.kg ⁻¹]	Seuil de décision [Bq.kg ⁻¹]
⁷ Be	1	1	1
⁴⁰ K	1	1	1
⁶⁰ Co	1	- /	1
⁶⁰ Co ¹³⁷ Cs	1	1	1
²¹⁰ Pb	1	/	1
²⁴¹ Am	1	/	1


^{*}Mesures trimestrielles (janvier, avril, juillet, octobre)

CONTRÔLE DES EAUX DE RESURGENCE

septembre 2015

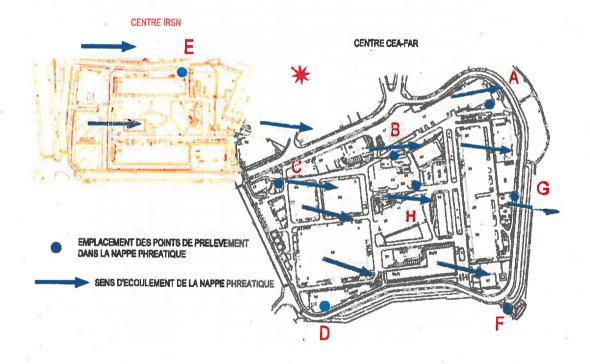
Origine	Activité	totale	⁴⁰ K	3	pН
7/	alpha	bêta	**K	³ H	
Fontaine du Lavoir	< 0,05	0,35	0,32	< 5,7	7,1
Fontaine du Moulin	0,12	0,24	0,19	7,1	7,5
Limite de détection Indicative [Bg.l ⁻¹]	0,07	0,14	0,03	7,00	
Seuil décision indicatif [Bq.l ⁻¹]	0,04	0,07	0,02	3,50	



CONTROLE DE LA NAPPE PHREATIQUE

septembre 2015

. Ce						
Point de prélèvement	Activité	totale	⁴⁰ K	T	³ H	pН
	alpha	bêta	"K		*H	176
A	0,10	0,14	0,09	<	5,6	6,7
В	0,15	0,17	0,05		13,2	7,2
С	0,12	0,15	0,09	<	6,0	7,3
F	0,36	0,36	0,17	<	6,1	6,2
G	0,13	0,17	0,05		9,2	6,9
н	0,15	0,14	0,05	<	5,7	7,0
Limite de détection indicative [Bg.I ⁻¹]	0,04	0,08	0,03		7,00	
Seuil décision indicatif [Bg.F ¹]	0,02	0,04	0,02		3,50	¥ *



CONTROLE DE LA NAPPE PHREATIQUE

septembre 2015

Détermination des radionucléides

Radionucléide		Activité volumique [Bq.l ⁻¹]									Limite de détection	Seuil de décision		
Point de prélèvement		Α		В		С		F		G		Н	indicative [Bq.l ⁻¹]	indicatif [Bq.l ⁻¹]
¹³⁷ Cs	<	0.19	<	0.12	<	0.04	<	0.19	<	0.05	<	0.03	0.05	0.025
²⁴¹ Am	<	0.61	<	0.76	<	0.56	<	0.67	<	0.29	<	0.50	0.20	0.10

septembre 2015

Station ATMOS

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	< 56	242± 58
2	< 61	275 ± 61
3	< 54	232 ± 59
4	< 57	230 ± 59
5	< 57	267 ± 61
6	< 62	230 ± 59
7	< 57	351 ± 66
8	< 62	< 105
9	< 57	141 ± 57
10	< 63	506 ± 76
11	< 65	572 ± 80
12	68 ± 36	748 ± 95
13	< 57	280 ± 62
14	< 56	208 ± 61
15	< 54	270 ± 63
16	< 71	375 ± 77
17	< 52	265 ± 66
18	< 59	240 ± 63
19	< 51	236 ± 62
20	< 48	372 ± 74
21	< 54	501 ± 87
22	< 61	179 ± 62
23	< 62	179 ± 59
24	< 63	298 ± 70
25	< 60	294 ± 68
26	< 56	292 ± 70
27	< 65	422 ± 80
28	< 72	362 ± 76
29	65 ± 35	393 ± 79
30	< 65	532 ± 92

Activité volumique moyenne (mBq.m⁻³) :

0,032

0,318

Activité volumique maximale (mBq.m-3):

0,068

0,748

Limite de détection indicative ALPHA [μ Bq.m 3] : 40 Limite de détection indicative BETA [μ Bq.m 3] : 100 Seuil de décision indicatif ALPHA [μ Bq.m 3] : 20 Seuil de décision indicatif BETA [μ Bq.m 3] : 50

septembre 2015

Station Bagneux

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
	< 55	275± 59
2	< 61	338 ± 64
3	< 53	250 ± 59
4	< 55	255 ± 60
5	< 56	293 ± 61
6	< 61	256 ± 60
7	< 56	274 ± 61
8	< 60	119 ± 54
9	< 55	160 ± 56
10	< 61	537 ± 77
11	< 64	673 ± 87
12	89 ± 41	757 ± 94
13	< 55	307 ± 62
14	< 55	167 ± 58
15	< 53	231 ± 60
16	< 68	353 ± 73
17	< 51	< 322
18	< 58	211 ± 60
19	< 50	225 ± 61
20	< 48	403 ± 76
21	< 53	536 ± 91
22	< 59	193 ± 61
23	< 60	141 ± 55
24	< 60	311 ± 68
25	< 59	362 ± 73
26	58 ± 33	277 ± 66
27	< 61	393 ± 75
28	< 66	344 ± 71
29	< 49	378 ± 74
30	< 60	542 ± 91

Activité volumique moyenne (mBq.m⁻³):

0,032

0,324

Activité volumique maximale (mBq.m-3):

0,089

0,757

Limite de détection indicative ALPHA [μ Bq.m 3] : 40 Limite de détection indicative BETA [μ Bq.m 3] : 100 Seuil de décision indicatif ALPHA [μ Bq.m 3] : 20 Seuil de décision indicatif BETA [μ Bq.m 3] : 50

septembre 2015

Station FAR2

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	< 55	281± 60
2	< 61	355 ± 65
3	< 54	248 ± 59
4	< 56	319 ± 64
-5	< 57	277 ± 61
6	< 61	222 ± 58
7	< 56	348 ± 65
8	< 61	187 ± 57
9	< 56	196 ± 58
10	75 ± 40	533 ± 77
11	< 64	631 ± 84
12	107 ± 46	783 ± 69
- 13	< 55	331 ± 64
14	< 53	182 ± 57
15	< 51	231 ± 58
16	< 65	352 ± 72
17	< 50	244 ± 63
18	< 57	220 ± 60
19	< 50	256 ± 63
20	< 47	372 ± 73
21	< 52	510 ± 87
22	< 58	210 ± 61
23	< 60	311 ± 68
24	< 59	367 ± 73
25	< 58	384 ± 75
26	53 ± 32	293 ± 68
27	< 61	430 ± 78
28	< 65	363 ± 72
- 29	51 ± 30	390 ± 75
30	< 60	449 ± 81

Activité volumique moyenne (mBq.m⁻³):

0,034

0,343

Activité volumique maximale (mBq.m⁻³):

0,107

0,783

Limite de détection indicative ALPHA [μBq.m⁻³]: 40 Limite de détection indicative BETA [μBq.m⁻³]: 100 Seuil de décision indicatif ALPHA [μBq.m⁻³]: 20 Seuil de décision indicatif BETA [μBq.m⁻³]: 50

septembre 2015

Station Clamart

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
- 1	< 60	287± 64
2	< 66	331 ± 67
3 de 00h00 à 11h00*	41 ± 24	837 ± 91
3 11h00 au 4 00h00°	< 107	251 ± 107
4	< 60	260 ± 64
5	< 61	281 ± 65
- 6	< 66	272 ± 64
7	< 61	366 ± 70
8	< 66	146 ± 59
9 .	< 60	215 ± 63
10	< 67	543 ± 81
11	< 70	681 ± 91
12	66 ± 36	756 ± 97
13	< 60	302 ± 65
14	< 58	147 ± 60
15	< 56	251 ± 63
16	< 71	359 ± 76
17	< 54	278 ± 69
18	< 61	186 ± 61
19	< 54	277 ± 68
20	57 ± 32	354 ± 74
21	< 55	530 ± 92
22	< 62	207 ± 65
23	< 64	245 ± 65
24	< 63	300 ± 69
25	< 62	332 ± 73
26	< 57	301 ± 72
27	< 67	437 ± 82
28	< 72	327 ± 73
29	< 54	437 ± 83
	< 65	513 ± 91

Activité volumique moyenne (mBq.m⁻³) :

0,034

0,355

Activité volumique maximale (mBq.m⁻³):

0,066

0,837

Limite de détection indicative ALPHA [μ Bq.m 3] : 40 Limite de détection indicative BETA [μ Bq.m 3] : 100 Seuil de décision indicatif ALPHA [μ Bq.m 3] : 20

Seuil de décision indicatif BETA [µBq.m⁻³] : 50

*Cf FE 15/55 (problème de déchargement du panier contenant les portes-filtres)

ACTIVITE VOLUMIQUE DES PRECIPITATIONS ATMOSPHERIQUES

septembre 2015

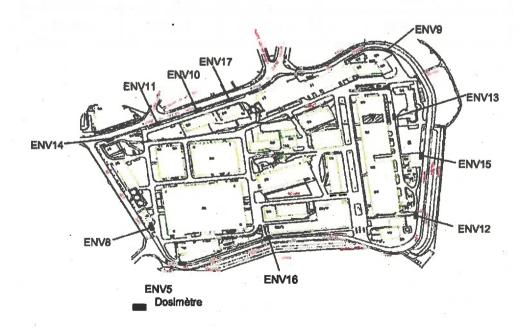
Station ATMOS											
Hauteur Activité volumique [Bq.i ⁻¹]											
ėriode	prél	evee				te tota		-	³ H	рН	
27/8	au	3/9	26,9	<	0,02	<	0,06	<	5,6	6,7	
3/9	au	10/9	1,6	<	0,02	<	0,06	<	5,5	7,0	
10/9	au	14/9	33,5	<	0,03	<	0,06	<	5,4	6,4	
14/9	au	17/9	27,0	<	0,02		0,07	<	5,3	6,1	
17/09	au	24/09	18,7		0,04		0,07	<	5,9	6,6	
	27/8 3/9 10/9 14/9	27/8 au 3/9 au 10/9 au 14/9 au	3/9 au 10/9 10/9 au 14/9	ériode prélevée de pluie (mm) 27/8 au 3/9 26,9 3/9 au 10/9 1,6 10/9 au 14/9 33,5 14/9 au 17/9 27,0	eriode prélevée de pluie (mm) 27/8 au 3/9 26,9 < 3/9 au 10/9 1,6 < 10/9 au 14/9 33,5 < 14/9 au 17/9 27,0 <	Activi Activi Activi alpha 27/8 au 3/9 26,9 < 0,02 3/9 au 10/9 1,6 < 0,02 10/9 au 14/9 33,5 < 0,03 14/9 au 17/9 27,0 < 0,02	ériode prélevée Hauteur de pluie (mm) Activité voi alpha 27/8 au 3/9 26,9 < 0,02	ériode prélevée Hauteur de pluie (mm) Activité totale alpha Activité totale 27/8 au 3/9 26,9 < 0,02	Hauteur de pluie (mm) Activité volumique [Bq.I ⁻¹] 27/8 au 3/9 26,9 < 0,02	Hauteur de pluie (mm) 27/8 au 3/9 26,9 < 0,02 < 0,06 < 5,6 3/9 au 10/9 1,6 < 0,02 < 0,06 < 5,5 10/9 au 14/9 33,5 < 0,03 < 0,06 < 5,4 14/9 au 17/9 27,0 < 0,02	

9			ondérée de mique (Ba.F ¹)
Hauteur de pluie totale	107,7	0,02	0,05

Les analyses radiologiques effectuées sur les eaux sont conformes aux normes NF M 60-800; NF M 60-801 et NF M 60-802.1

					Station B	AGNI	EUX					
ériode prélevée			Hauteur de pluie				Activité volumique [8q.l ⁻¹]					
			(mm)		alpha		bêta	°H*				
27/8	au	3/9	27,5		0,03		0,09		6,5			
3/9	au	14/9	33,4	<	0,03	<	0,06	BUET	6,5			
14/9	au	17/9	27,1		0,03		0,16	S	6,3			
17/9	au	24/9	16,3		0,11		0,17	SA	6,6			
	27/8 3/9 14/9	27/8 au 3/9 au 14/9 au	3/9 au 14/9 14/9 au 17/9	riode prélevée de pluie (mm) 27/8 au 3/9 27,5 3/9 au 14/9 33,4 14/9 au 17/9 27,1	riode prélevée de pluie (mm) 27/8 au 3/9 27,5 3/9 au 14/9 33,4 < 14/9 au 17/9 27,1	riode prélevée Hauteur de pluie (mm) Activ (mm) alpha 27/8 au 3/9 27,5 0,03 3/9 au 14/9 33,4 < 0,03 14/9 au 17/9 27,1 0,03	riode prélevée Hauteur de pluie (mm) Activité vot (alpha 27/8 au 3/9 27,5 0,03 3/9 au 14/9 33,4 < 0,03 < 14/9 au 17/9 27,1 0,03	riode prélevée de pluie (mm) Activité totale 27/8 au 3/9 27,5 0,03 0,09 3/9 au 14/9 33,4 < 0,03 < 0,06 14/9 au 17/9 27,1 0,03 0,16	Hauteur de pluie (mm) Activité volumique [Bq.l ⁻¹] Activité totale 3H*			

0		Moyenne p	ondérée de mique [Bq.[⁻¹]
Hauteur de pluie totale	104,3	0,04	0,10


	alpha	bêta	³ H
Limite de détection indicative [Bq.I ⁻¹]	0,04	0,08	7
Seuil de décision indicatif	0,02	0,04	3,5

^{*}Seuls les prélèvements de la station ATMOS font l'objet d'une mesure tritium

EXPOSITION AMBIANTE

MESUF	RE MENSUELLE
Point de Mesure	Résultat (bêta + X + gamma) (H*(10) en μSv)
FAR-ATMOSPHERIQUE ENV3	51
FAR 2 ENV4	69
BAGNEUX ENV6	37
CLAMART ENV7	96
ENV5	65
ENV8	41
ENV9	61
ENV10	47
ENV11	74
ENV12	50
ENV13	65
ENV14	65
ENV15	65
ENV16	51
ENV17	38

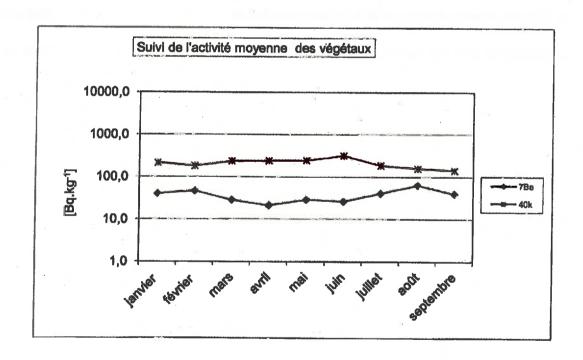
MESURE DE L'ACTIVITE VOLUMIQUE EN TRITIUM DANS L'ATMOSPHERE

septembre 2015

Point de prélèvement	Valeur d'activité	Limite de	Seuil de
	maximale sur le	détection	décision
	mois	indicative	indicatif
	[Bq.m ⁻³]	[Bq.m ⁻³]	[Bq.m ⁻³]
FAR ATMOSPHERIQUE	< 0,19	0,3	0,15

MESURE DE L'ACTIVITE VOLUMIQUE EN 131 DANS L'ATMOSPHERE

Point de prélèvement		leur d'activité eximale sur le mois [Bg.m ⁻³]	Limite de détection indicative [Bq.m ⁻³]	Seuil de décision indicatif [Bq.m ⁻³]
FAR ATMOSPHERIQUE	<	4,6E-04	3,0E-04	1,5E-04
BAGNEUX	<	2,7E-04	3,0E-04	1,5E-04



CONTROLE DES VEGETAUX DANS L'ENVIRONNEMENT

septembre 2015

Mesure par spectrométrie gamma de la radioactivité des végétaux dans les stations de contrôle de l'environnement

Activ	ité dans les végéta	ux frai	s [Bq.kg ']		
Radionucléide	Limite de détection maximale		Moyenne		Maximum
⁷ Be	14		40		47
⁴⁰ K	- 34		143		160
¹³⁷ Cs	1,9	<	1,9	<	1,9
²⁴¹ Am	1,1	<	1,1	<	1.1

Transferts aux égouts et rejets atmosphériques

⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
A Composition chimique des effluents rejetés	Page 24

CONTROLE DES TRANSFERTS LIQUIDES ET DES REJETS ATMOSPHERIQUES

septembre 2015

TRANSFERTS LIQUIDES (*) (**)

Emetteurs mesurés	Activité globale [Bq]	Limite de sensibilité [Bq.m ⁻³]
Alpha	1,9E+03 ± 3,8E+02	1,00E+03
Bêta	7,6E+03 ± 1,5E+03	2,00E+03
³ H	< 1,5E+05	2,00E+04
¹⁴ C	< 7,0E+04	2,00E+04

(*) Détails des transferts liquides : voir tableau joint page 23 (**) Composition chimique des effluents rejetés : voir tableau Joint page 24

REJETS ATMOSPHERIQUES

prélèvements concernés	concernés détection		Seuil de décision indicatif [Bq.m ³]
174	0	2,0E-04	1.0E-04

Elements mesurés	Activité globale [8q]	Limite de détection indicative [Bq.m ⁻³]	Seuil de décision indicatif [Bq.m ⁻³]	
Gaz (Eq, Kr-85)	< 1,6E+11	3,0E+04	1,5E+04	
Halogènes	2,7E+05	5,0E-03	2,5E-03	
Aérosols bêta	3,7E+03	5,0E-04	2,5E-04	

ETAT DES TRANSFERTS LIQUIDES AU CEA/Fontenay-aux-Roses

Date	Ori	gine	Volume	Durée	Débit rejet	Débit égout		Activité [B			100 100 100 100	ipaux icléides
du rejet	Bât.	Guve n°	[m³]	[b]	[m ³ .h ⁻¹]	[m³.h¹]	Alpha	Bêta	14C	3H	Emetteur alpha	Emetteur béta
1	18	5	8	8	1	10	1,6E+03	2,2E+03	< 7,0E+04	< 2,0E+05	1	1
8	50	3	6	3	2	20	< 4,6E+02	2,8E+03	< 4,8E+04	< 7,2E+04		1
8	10	1	3	1,5	2	20	< 2,4E+02	2,5E+03	< 2,3E+04	< 3,6E+04	1	1

COMPOSITION CHIMIQUE DES EFFLUENTS REJETES PAR LES CUVES DE LABORATOIRE

Date de rejet	Bát	Cuve n°	Volume [m³]	pH	MES (mg/l)	DCO (mg/l)	DBO5 (mg/l)	Mark Control of the C	NTK (mg/i)	Pt (mg/l)	HT (mg/l)	F (mg/l)
1	18	5	8	8,5	33	38,9	<25	1	<20	21	2,5	<3
8	50	3	. 6	7,9	<10	28,7	. <25	1	35	38	6,1	<3
8	10	1	3	8,5	26	48	30	1,6	37	39	3,2	<3

Date de rejet	Bät	Cuve nº	Volume [m³]			Zn (mg/l)	Ni (mg/l)	Pb (mg/l)	Cr (mg/l)	Cd (mg/i)
1	18	5	8	2,3	0,43	0,37	<0,25	<0,13	<0,13	<0,13
8	50	3	6	<1,5	<0,13	<0,25	<0,25	<0,13	<0,13	<0,13
8	10	1	3	1,3	<0,13	0,27	<0,25	<0,13	<0,13	<0,13

Appareillage

S CEP - Elalonnade	\Rightarrow	CEP	_	Etalonnage
--------------------	---------------	-----	---	-------------------

Page 26

⇒ Dispositif de mesure

Page 27

SUIVI DES ETALONNAGES ET DES CEP

TYPE DE CONTROLE	APPAREIL	DATE		ODOEDWATIONS
		CEP	ETALONNAGE	OBSERVATIONS
Activité volumique alpha et bêta des poussières atmosphériques et irradiation	BFSAB ATMOS	24/9		
	BFSAB Bagneux	24/9		
	BFSAB Clamart	24/9		
	BFSAB FAR 2	24/9		
Surveillance en temps réel de l'activité dans l'égout urbain	COBENADE	7/9		
	Sonde pH du 17, 55 et EU	7/9		
	Sonde gamma du 17 et 55	7/9		
Surveillance en temps réel des rejets gazeux	Bâtiment 18 tranche 1	17/9		
	Bâtiment 18 tranche 2	17/9		7
	Bâtiment 18 tranche 3	17/9		
	Bâtiment 18 tranche 4	17/9		
	Bâtiment 10	9/9		
	Bâtiment 50	9/9		
	Bâtiment 53	8/9		
	Bâtiment 58	8/9		
	Bâtiment 52	21/9		

DEFAUTS OU DYSFONCTIONNEMENTS DES DISPOSITIFS DE MESURE

septembre 2015

TYPE DE CONTROLE	PANNE CONSTATEE	N° DE LA FICHE	DATE ET HEURE UTC DES EVENEMENTS SUCCESSIFS	MESURE CONSERVATOIRE	
Contrôle temps réel de la radioactivité dans l'environnement	Station Clamart Problème sur le panier de déchargement	FE 15/55	Le 03/09 à 11h00	Le filtre du 30/08 est repassé sous la voie de prélèvement le 03/09 de 00h00 à 11h00. Mise en place d'un filtre neuf le 03/09 à 11h00.	
	Station Clamart Défaut communication (lié à une micro-coupure électrique)	FE 15/35	Le 17/09 à 16h52	Relance du PC local, réinitialisation des TUT et retour en bon fonctionnement.	
	Station ATMOS Défaut communication (plantage du PC local)	FE 15/59	Le 18/9 à 10h26 Le 24/09 à 22h01	Relance du PC local et retour en bon fonctionnement immediat.	
Contrôle temps réel de la radioactivité dans l'égout urbain			RAS		
Centralisation des données environnementales			RAS		
Surveillance en temps réel des rejets gazeux			RAS		

Légende : FC : Fiche de Constat

FE : Fiche d'Ecart