

CENTRE DE FONTENAY-AUX-ROSES

Service de Protection contre les Rayonnements et de l'Environnement

COBENADE : mesures des émetteurs bêta et gamma à l'Egout Urbain

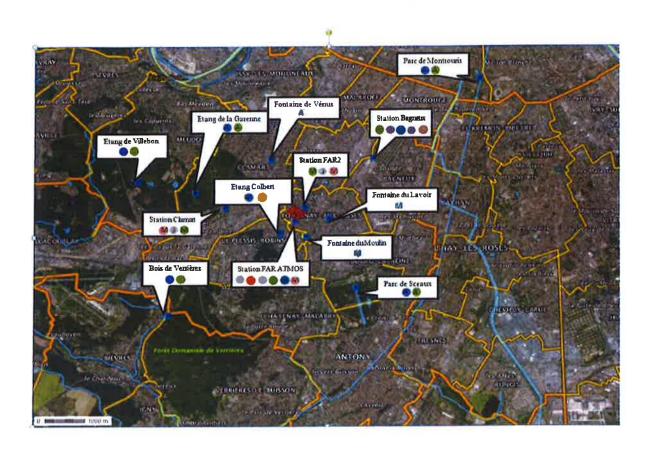
RESULTATS DES CONTROLES DE L'ENVIRONNEMENT

BILANS DES TRANSFERTS LIQUIDES ET DES REJETS GAZEUX

MARS 2015

⇒ Plan de situation

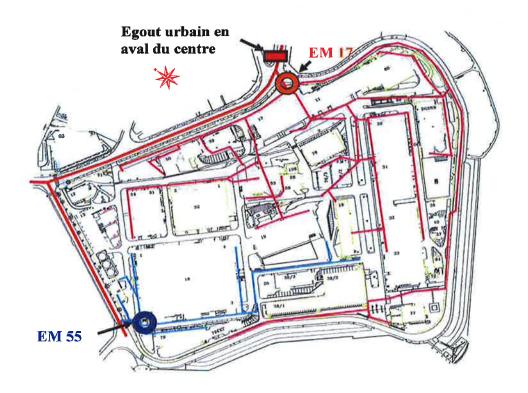
SOMMAIRE


La surveillance de l'environnement

⇒ Activité moyenne mensuelle des eaux de l'égout collecteur	Page 4
⇒ Contrôle du pH des eaux de l'égout collecteur	Page 5
⇒ Contrôle des boues de l'égout collecteur	Page 6
⇒ Analyse chimique des eaux des émissaires	Page 7
⇒ Contrôle des eaux de l'étang Colbert	Page 8
⇒ Contrôle des sédiments de l'étang Colbert	Page 9
⇒ Contrôle des eaux de résurgence	Page 10
⇒ Contrôle de la nappe phréatique	Page 11
\Rightarrow Activité volumique α et β des poussières atmosphériques	Page 13
⇒ Activité volumique des précipitations atmosphériques	Page 17
⇒ Exposition ambiante	Page 18
➡ Mesure de l'activité volumique en tritium dans l'atmosphère	Page 19
⇒ Mesure de l'activité volumique en ¹³¹ I dans l'atmosphère	Page 19
⇒ Contrôle des végétaux	Page 20
Transferts aux égouts et rejets atmosphériques	
⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
⇒ Composition chimiques des effluents rejetés	Page 24
Appareillage	
 ⇒ CEP - Etalonnage ⇒ Dispositif de mesure 	Page 26 Page 27

Page 3

La Surveillance de l'environnement



ACTIVITE MOYENNE MENSUELLE DES EAUX DE L'EGOUT COLLECTEUR URBAIN

mars 2015

MESURE	Activité volumique moyenne mensuelle [Bq.l ⁻¹]	Limite de détection indicative [Bq. [-1]	Seuil de décision indicatif [Bq.i ⁻¹]
Radioactivité alpha	< 0,2	0,2	0,1
Radioactivité bêta	< 0,6	0,6	0,3
Radioactivité tritium	< 15	15	7,5
Volume d'effluents mesuré dans l'égout [m³]		10800	
Incertitude de mesure [m³]		10	00

Les analyses radiologiques effectuées sur les eaux sont conformes aux normes NF ISO 10704 et NF M 60-802-3

CONTROLE DU 2H DES FAUX DE L'EGOUT DU COLLECTEUR URBAIN

mars 2015

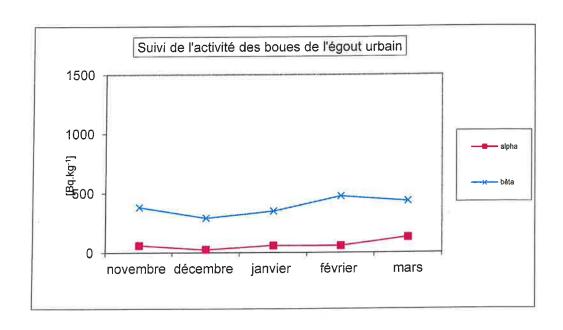
	Volume dans le	Moyenne	S'il y a lieu, valeur
Date	collecteur [m³]	journalière du pH*	du dépassement
1	300	8,3	
2	319	8,5	
3	446	8,5	
4	283	8,5	
5	326	8,5	1
6	286	8,5	
7	206	8,5	
8	204	8,5	
9	310	8,5**	
10	329	8,7**	
11	300	8,7**	l l
12	326	8,7**	
13	326	6,6**	
14	300	8,3	
15	185	8,4	
16	185	8,8**	
17	295	8,7**	
18	341	8,5**	
19	324	8,6**	
20	331	8,6**	
21	298	8,6**	
22	199	8,5**	
23	214	8,6**	
24	317	7,9	Á
25	1166	8,1	
26	317	8,4	
27	413	8,0	
28	278	7,9	
29	247	7,6	
30	1145	8,1	
31	307	8,2	
Total mensuel [m³]	10800		
Moyenne journalière [m³]	350		

^{*} Conformément à l'arrêté d'autorisation de déversement des eaux usées non domestiques dans le réseau public d'assainissement du 1^{er} mars 2011, le pH doit être compris entre 5,5 et 8,5.

Il convient de noter que les valeurs de pH observées au niveau des émissaires du centre sont restées conformes et inférieures à 8.5 unité pH.

^{**} FE 15/14: Après investigation suite à de nombreux dépassements au niveau de l'EU, il a été constaté un décalage entre les valeurs de pH mesurés sur le pHmètre local et les mesures de pH effectuées en laboratoire (décalage de +0.5 unité pH). Le pHmètre local a été reétalonné le 24/03.

CONTROLE DES BOUES DE L'EGOUT COLLECTEUR URBAIN


mars 2015

Matière sèche	alpha	bêta
Activité massique [Bq.kg ⁻¹]	128	434
Limite de détection [Bq.kg ⁻¹]	21	48
Seuil de décision [Bq.kg ⁻¹]	11	24

Détermination des radionucléides

DOCOTTON CONTRACTOR CO				
	Activité	Limite de	Seuil de	
Radionucléide	massique	détection	décision	
	[Bq.kg ⁻¹]	[Bq.kg ⁻¹]	[Bq.kg ⁻¹]	
⁶⁰ Co	< 0.91	0.91	0.46	
¹³⁷ Cs	32	2.7	1.4	
²⁴¹ Am	3.5	2.1	1.1	

La mesure de la boue est effectuée selon la norme NF M60-790 (norme sols)

ANALYSES CHIMIQUES DES EAUX D'EGOUTS PRELEVEES AU NIVEAU DES EMISSAIRES

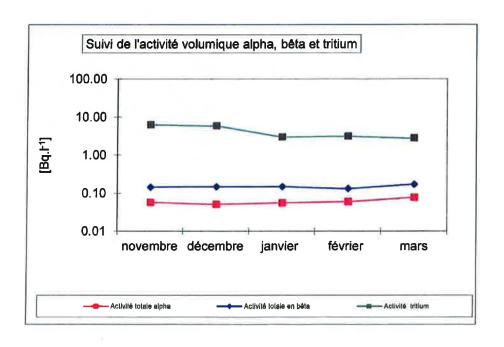
mars 2015

			Emis	saire *	
			17	55	
			Date de pr	rélèvement	
Paramètres	Unités	Valeurs limites	04/03/15	04/03/15	
рН	1	5,5< <8,5	8,1	8,7**	
MES	mg/l	600	23	82	
DCO	mg O2/I	2000	44	212	
DBO5	mg O2/I	800	<25	105	
DCO/DBO5	1	2,5		2,0	
Azote Kjeldhal	mg N/I	150	<20	91	
Phosphore total	mg P/I	50	3,8	5,8	
Hydrocarbures totaux	mg/l	10	<3	<3	
Cyanures	mg/l	0,1	<0,04	<0,04	
Fluorures	mg/l	15	<0,25	0,34	
Fer + Aluminium	mg/l	5	1,3	24,8***	
Cuivre	mg/l	0,5	<0,13	<0,13	
Zinc	mg/l	2	<0,25	<0,25	
Nickel	mg/l	0,5	<0,25	<0,25	
Plomb	mg/l	0,5	<0,13	<0,13	
Chrome total	mg/l	0,5	<0,13	<0,13	
Cadmium	mg/i	0,2	<0,13	<0,13	
Agents de surface anioniques	mg/l	30			
Chrome hexavalent	mg/l	0,1			
Sulfates	mg/l	2000			
Argent	mg/l	0,5	Analyses semestrielles	Analyses semestrielles	
Arsenic	mg/l	0,05			
Etain	mg/l	2			
Manganèse	mg/l	1		Contain the Land	
Indice phénol	mg/l	0,3			

^{*} Résultats sur échantillon 24h mensuel, conformément à l'arrêté du 1er mars 2011

^{**} Dépassement d'origine inconnue

^{***}Origine de ce dépassement: Après investigation auprès des INB, ce dépassement ne semble pas leur être imputable. Il est probablement lié au chantier se déroulant à proximité de l'EM 55 (travaux relatifs à la séparation des réseaux INB/DSV).


CONTROLE DES EAUX DE SURFACE DE L'ETANG COLBERT

mars 2015

	Activité volu	mique [Bq.l ⁻¹]			
Activi	Activité totale				
alpha	bêta	⁴⁰ K	³ H		
0.08	0.17	0.12	< 5.6	7.8	
Lin	Limite de détection indicative [Bq.l ⁻¹]				
0.04	0.08	0.03	7		
S	Seuil de décision indicatif [Bq.l ⁻¹]				
0.02	0.04	0.02	3.5		

Détermination des radionucléides :

Radionucléide	Radionucléide Activité volumique [Bq.l ⁻¹]		Seuil de décision [Bq.l ⁻¹]
¹³⁷ Cs	< 0.10	0.10	0.05
²⁴¹ Am	²⁴¹ Am < 0.20		0.10

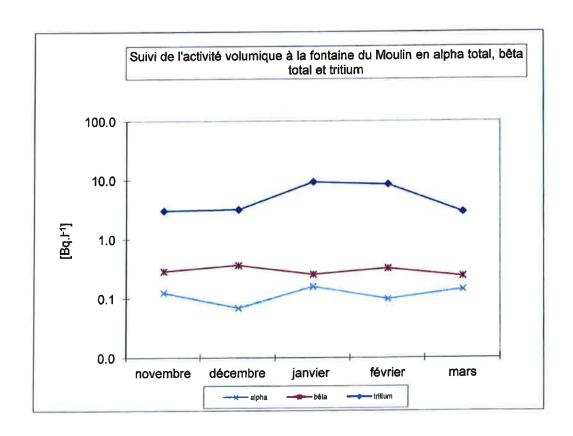
CONTROLE DES SEDIMENTS DE L'ETANG COLBERT

mars 2015

Matière sèche	alpha	bêta
Activité massique* [Bq.kg ⁻¹]	1	1
Limite de détection [Bq.kg ⁻¹]	1	1
Seuil de décision [Bq.kg ⁻¹]	1	1

Détermination des radionucléides

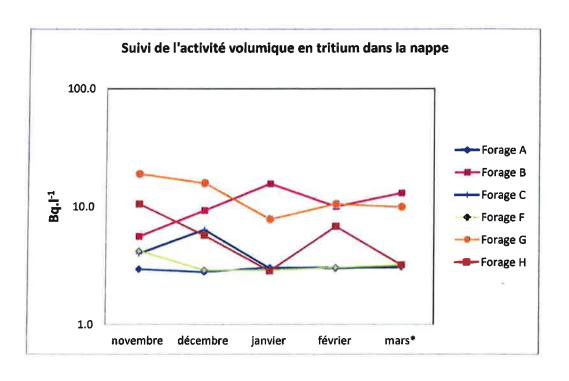
Radionucléide	Activité massique* [Bq.kg ⁻¹]	Limite de détection [Bq.kg ⁻¹]	Seuil de décision [Bq.kg ⁻¹]
⁷ Be	1	1	1
⁴⁰ K	1	1	1
⁶⁰ Co	1	1	1
⁶⁰ Со ¹³⁷ Сs	1	1	1
²¹⁰ Pb	1	1	1
²⁴¹ Am	1	1	1


^{*}Mesures trimestrielles (janvier, avril, juillet, octobre)

CONTRÔLE DES EAUX DE RESURGENCE

mars 2015

Activité volumique [Bq.I ⁻¹]						
Origine	Activité	totale	⁴⁰ K	³ H	pН	
	alpha	bêta	K	П		
Fontaine du Lavoir	0.08	0.36	0.30	< 5.8	7.1	
Fontaine du Moulin	0.14	0.24	0.21	< 5.8	7.4	
Limite de détection indicative [Bq.l ⁻¹]	0.07	0.14	0.03	7.00		
Seuil décision indicatif [Bq.[⁻¹]	0.04	0.07	0.02	3.50		

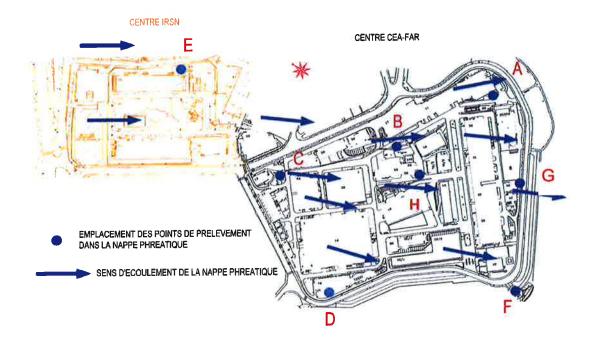


CONTROLE DE LA NAPPE PHREATIQUE

mars 2015

B.:	Activité volumique [Bq.l ⁻¹]					
Point de prélèvement	Activite	é totale	⁴⁰ K		³ H	pН
	alpha	bêta	^		П	
Α ,	0.22	0.25	0.08	<	6.2	6.6
В	0.19	0.22	0.06	1	13.0	7.1
С	0.16	0.13	0.10	<	6.1	7.3
D*	0.24	0.13	0.06	<	5.9	6.8
E*	0.15	0.09	0.06	<	5.9	7.0
F	0.55	0.35	0.17	<	6.4	6.3
G	0.19	0.15	0.06		9.9	6.8
н	0.16	0.20	0.05	<	6.4	7.0
Limite de détection indicative [Bq.l ⁻¹]	0.04	0.08	0.03		7.00	
Seuil décision indicatif [Bq.ſ ⁻¹]	0.02	0.04	0.02		3.50	

^{*} Prélèvements annuels


CONTROLE DE LA NAPPE PHREATIQUE

mars 2015

Détermination des radionucléides

Radionucléide	Activité volumique [Bq.l⁻¹]						Limite de détection			
Point de prélèvement	Α	В	С	D*	E*	F	G	H	indicative [Bq.l ⁻¹]	indicatif [Bq.l ⁻¹]
¹³⁷ Cs	< 0.18	< 0.14	< 0.15	< 0.21	< 0.22	< 0.17	< 0.16	< 0.08	0.05	0.025
²⁴¹ Am	< 0.29	< 0.33	< 0.24	< 0.56	< 0.62	< 0.43	< 1.00	< 0.80	0.20	0.10

^{*} Prélèvements annuels

mars 2015

Station ATMOS

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	< 70	142± 44
2	< 61	165 ± 46
3	< 67	218 ± 48
4	< 89	153 ± 51
5	< 67	161 ± 45
6	70 ± 40	258 ± 50
7	106 ± 49	451 ± 63
8	115 ± 53	536 ± 71
9	< 77	259 ± 51
10	< 80	240 ± 54
11	78 ± 43	201 ± 48
12	75 ± 40	232 ± 50
13	76 ± 40	227 ± 49
14	119 ± 55	410 ± 63
15	115 ± 53	367 ± 59
16	128 ± 55	583 ± 74
17	175 ± 69	886 ± 99
18	277 ± 98	1056 ± 113
19	166 ± 66	714 ± 85
20	218 ± 80	978 ± 107
21	147 ± 60	547 ± 73
22	< 67	109 ± 43
23	88 ± 45	302 ± 53
24	85 ± 44	260 ± 52
25	< 72	176 ± 47
26	< 73	164 ± 48
27	< 69	212 ± 47
28	< 66	166 ± 46
29	79 ± 41	170 ± 45
30	< 74	157 ± 45
31	< 66	165 ± 45

Activité volumique moyenne (mBq.m⁻³) :

0,084 0,344

Activité volumique maximale (mBq.m⁻³):

0,277

1,056

mars 2015

Station Bagneux

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	< 72	154± 45
2	63 ± 37	179 ± 47
	< 67	207 ± 47
3		
4	< 90	206 ± 54
5	< 66	208 ± 47
6	87 ± 44	285 ± 52
7	85 ± 43	455 ± 63
8	121 ± 55	599 ± 76
9	< 76	272 ± 52
10	< 79	232 ± 53
11	73 ± 35	259 ± 41
12	< 108	257 ± 78
13	114 ± 55	273 ± 61
14	< 75	405 ± 62
15	110 ± 51	386 ± 59
16	144 ± 59	675 ± 81
17	234 ± 86	881 ± 99
18	264 ± 95	1077 ± 115
19	167 ± 66	670 ± 82
20	261 ± 93	1039 ± 113
21	146 ± 59	552 ± 73
22	< 66	120 ± 44
23	82 ± 44	284 ± 53
24	72 ± 41	248 ± 52
25	< 73	146 ± 46
26	< 78	131 ± 49
27	< 70	245 ± 50
28	< 68	172 ± 47
29	< 63	170 ± 46
30	< 75	181 ± 46
31	< 66	175 ± 46

Activité volumique moyenne (mBq.m⁻³) :

0,084

0,359

Activité volumique maximale (mBq.m⁻³) :

0,264

1,077

mars 2015

Station FAR2

	A attivité alaba	Activité bêta
Date du	Activité alpha	
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	< 69	175± 45
2	< 61	178 ± 47
3	90 ± 44	240 ± 49
4	94 ± 53	305 ± 60
5	< 65	203 ± 46
6	< 67	268 ± 50
7	117 ± 51	438 ± 61
8	83 ± 45	640 ± 78
9	< 93	294 ± 61
10	78 ± 43	292 ± 52
11	88 ± 38	305 ± 43
12	< 66	242 ± 52
13	67 ± 37	277 ± 51
14	87 ± 46	371 ± 59
15	101 ± 48	404 ± 60
16	148 ± 59	589 ± 73
17	239 ± 87	883 ± 98
18	328 ± 113	1085 ± 115
19	183 ± 70	786 ± 90
20	270 ± 95	1046 ± 112
21	175 ± 67	605 ± 76
22	< 64	139 ± 43
23	85 ± 43	311 ± 53
24	76 ± 41	265 ± 51
25	< 70	150 ± 45
26	< 70	113 ± 44
27	73 ± 42	211 ± 48
28	90 ± 44	205 ± 47
29	< 59	157 ± 43
30	< 71	187 ± 45
31	< 63	161 ± 43

Activité volumique moyenne (mBq.m⁻³) :

0,093

0,372

Activité volumique maximale (mBq.m⁻³) :

0,328

1,085

mars 2015

Station Clamart

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	< 69	136± 43
2	66 ± 36	186 ± 46
3	< 64	209 ± 46
4	< 74	217 ± 47
5	< 64	181 ± 44
6	< 66	269 ± 50
7	83 ± 42	391 ± 57
8	122 ± 54	581 ± 74
9	< 75	273 ± 51
10	< 78	237 ± 53
11	< 69	241 ± 50
12	< 168	< 216
13	85 ± 42	298 ± 54
14	< 74	393 ± 61
15	126 ± 55	383 ± 59
16	163 ± 64	603 ± 75
17	186 ± 72	802 ± 91
18	270 ± 96	1036 ± 111
19	182 ± 70	707 ± 84
20	240 ± 90	965 ± 111
21	135 ± 57	517 ± 71
22	< 69	109 ± 44
23	105 ± 49	312 ± 54
24	72 ± 41	204 ± 49
25	< 71	141 ± 45
26	< 71	112 ± 44
27	< 70	228 ± 49
28	< 67	183 ± 47
29	< 62	158 ± 44
30	< 74	256 ± 50
31	< 65	145 ± 44

Activité volumique moyenne (mBq.m⁻³) :

0,081

0,341

Activité volumique maximale (mBq.m⁻³):

0,270

1,036

ACTIVITE VOLUMIQUE DES PRECIPITATIONS ATMOSPHERIQUES

mars 2015

Station ATMOS											
				Hauteur		Activité volumique [Βq.Γ¹]					
Pé	eriode	préle	evée	de pluie		Activit	é totale		³ H	рΗ	
				(mm)		alpha		bêta			
du	26/2	au	5/3	12.3	<	0.03	<	0.06		7.2	6.4
du	5/3	au	26/3	12.8		0.03		0.08	<	5.7	7.0

		Moyenne pondérée de l'activité volumique [Bq.l ⁻¹]		
Hauteur de pluie totale	25.1	0.02	0.06	

Les analyses radiologiques effectuées sur les eaux sont conformes aux normes NF M 60-800; NF M 60-801 et NF M 60-802.1

	Station BAGNEUX								
_	Hauteur Activité volumique [Bq.l ⁻¹]								
Pé	ériode	préle	evée	de pluie	Activité totale			³ H*	Нq
				(mm)	alpha		bêta	П	
du	26/2	au	5/3	13.4	0.04		0.06	ωH	6.7
du	5/3	au	26/3	12.2	0.02	<	0.06	SANS	7.2

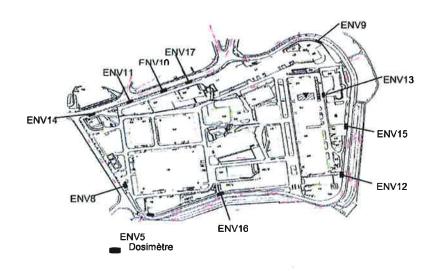
		Moyenne po		
		ľactivité volur	mique [Bq.l ⁻¹]	
Hauteur de pluie totale	25.6	0.03	0.05	
		alpha	bêta	³ H
Limite de détection indicative [Bq.l ⁻¹]		0.04	0.08	7
Seuil de décision in	ndicatif	0.00	0.04	3.5

^{*}Seuls les prélèvements de la station ATMOS font l'objet d'une mesure tritium

0.02

[Bq.[1]

0.04


3.5

EXPOSITION AMBIANTE

mars 2015

MI	MESURE MENSUELLE				
Point de Mesure	Résultat (bêta + X + gamma) (H*(10) en μSv)				
FAR-ATMOSPHERIQUE ENV3	60				
FAR 2 ENV4	80				
BAGNEUX ENV6	60				
CLAMART ENV7	70				
ENV5	70				
ENV8	60				
ENV9	80				
ENV10	60				
ENV11	60				
ENV12	50				
ENV13	70				
ENV14	70				
ENV15	70				
ENV16	60				
ENV17	60				

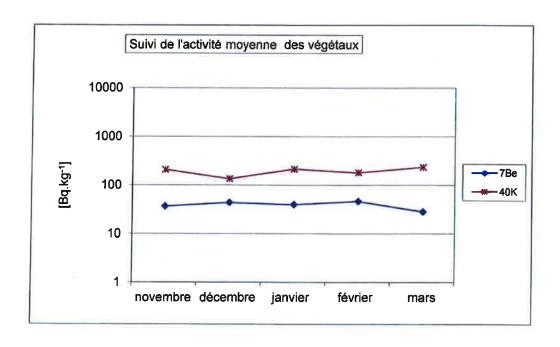
MESURE DE L'ACTIVITE VOLUMIQUE EN TRITIUM DANS L'ATMOSPHERE

mars 2015

Point de prélèvement	Valeur d'activité	Limite de	Seuil de
	maximale sur le	détection	décision
	mois	indicative	indicatif
	[Bq.m ⁻³]	[Bq.m ⁻³]	[Bg.m ⁻³]
FAR ATMOSPHERIQUE	< 0,17	0,30	0,15

MESURE DE L'ACTIVITE VOLUMIQUE EN 131 DANS L'ATMOSPHERE

Point de prélèvement	Valeur d'activité maximale sur le mois [Bq.m ⁻³]	Limite de détection indicative [Bg.m ⁻³]	Seuil de décision indicatif [Bq.m ⁻³]	
FAR ATMOSPHERIQUE	< 4,4E-04	3,0E-04	1,5E-04	
BAGNEUX	< 2,8E-04	3,0E-04	1,5E-04	



CONTROLE DES VEGETAUX DANS L'ENVIRONNEMENT

mars 2015

Mesure par spectrométrie gamma de la radioactivité des végétaux dans les stations de contrôle de l'environnement

Activ	ité dans les végétau	ıx frais	[Bq.kg ⁻¹]		
Radionucléide	Limite de détection maximale		Moyenne		Maximum
⁷ Be	47		29		39
⁴⁰ K	84		233		270
¹³⁷ Cs	6.4	<	6.4	<	6.4
²⁴¹ Am	2.9	<	2.9	<	2.9

Transferts aux égouts et rejets atmosphériques

⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
⇒ Composition chimique des effluents reietés	Page 24

CONTROLE DES TRANSFERTS LIQUIDES ET DES REJETS ATMOSPHERIQUES

mars 2015

TRANSFERTS LIQUIDES (*) (**)

Emetteurs mesurés	Activité globale [Bq]	Limite de sensibilité [Bq.m ⁻³]
Alpha	3.3E+04 ± 6.6E+03	1.00E+03
Bêta	4.0E+04 ± 8.0E+03	2.00E+03
³ H	< 6.0E+05	2.00E+04
¹⁴ C	< 4.2E+05	2.00E+04

(*) Détails des transferts liquides : voir tableau joint page 23 (**) Composition chimique des effluents rejetés : voir tableau joint page 24

REJETS ATMOSPHERIQUES

Nombre de	Nombre de prélèvements	Limite de détection	Seuit de décision
prélèvements	supérieur à la limite de	indicative en alpha	indicatif
concernés	détection	[Bq.m ⁻³]	[Bq.m ⁻³]
178	0	2.0E-04	1.0E-04

Elements mesurés	Activité globale [Bq]	Limite de détection indicative [Bq.m ⁻³]	Seuil de décision indicatif [Bq.m ⁻³]
Gaz (Eq, Kr-85)	< 1.6E+11	3.0E+04	1.5E+04
Halogènes	2.8E+04	5.0E-03	2.5E-03
Aérosols bêta	4.4E+03	5.0E-04	2.5E-04

ETAT DES TRANSFERTS LIQUIDES AU CEA/Fontenay-aux-Roses

mars 2015

Date	Ori	gine	Volume	Durée	Débit	Débit					Principaux radionucléides	
rejet	Bát	Cuve n°	[m ³]	[h]	rejet [m³.h ⁻¹]	égout [m³.in ⁻¹]	Alpha	Bêta	14C	H	Emetteur alpha	Emetteur beta
6	10	6	3	1,5	2	20	5,5E+02	2,3E+03	< 2,4E+04	< 3,6E+04	1	1
6	50	3	6	3	2	20	5,8E+02	1,6E+03	< 4,6E+04	< 7,2E+04	1	_ /
10 au 20	18	5	100	67	1,5	15	3,2E+04	3,6E+04	< 7,6E+05	< 1,1E+06	1	1

COMPOSITION CHIMIQUE DES EFFLUENTS REJETES PAR LES CUVES DE LABORATOIRE

mars 2015

Date de rejet	Bât	Cuve nº	Volume [m³]	Нq	MES (mg/l)	DCO (mg/l)	DBO5 (mg/l)	DCO/ DBO5	NTK (mg/l)	Pt (mg/l)	HT (mg/l)	F (mg/l)
6	10	6	3	7.7	16	26	<25	1	25	4.5	<3	<0,25
6	50	3	6	7.5	<10	<20	<25	1	<20	<2,5	<3	<0,25
10 au 20	18	5	100	8.0	<10	<20	<25	1	<20	<2,5	<3	0.5

Date de rejet	Båt	Cuve n°	Volume [m³]	Fe +Al (mg/l)	All and the second second	Zn (mg/l)	Ni (mg/l)	Pb (mg/l)	Cr (mg/l)	Cd (mg/l)
6	10	6	3	1.1	<0,13	0.61	<0,25	<0,13	<0,13	<0,13
6	50	3	6	<1,5	<0,13	0.39	<0,25	<0,13	<0,13	<0,13
10 au 20	18	5	100	<1,5	<0,13	<0,25	<0,25	<0,13	<0,13	<0,13

Appareillage

⇒ CEP - Etalonnage

Page 26

⇒ Dispositif de mesure

Page 27

SUIVI DES ETALONNAGES ET DES CEP

mars 2015

TYPE DE CONTROLE	ADDADEU	ž (DATE	OBSERVATIONS
TYPE DE CONTROLE	APPAREIL	CEP	ETALONNAGE	OBSERVATIONS
	BFSAB ATMOS	26/3		
Activité volumique alpha et bêta des poussières atmosphériques	BFSAB Bagneux	26/3		
	BFSAB Clamart	26/3		
	BFSAB FAR 2	26/3		
Surveillance en temps réel de l'activité dans	COBENADE	2/3		
	Sonde pH du 17, 55 et EU	2/3		
l'égout urbain	Sonde gamma du 17 et 55	2/3		
	Bâtiment 18 tranche 1	18/3		
	Bâtiment 18 tranche 2	18/3		
	Bâtiment 18 tranche 3	18/3		
Surveillance en temps	Bâtiment 18 tranche 4	18/3		
réel des rejets gazeux	Bâtiment 10	10/3		
	Bâtiment 50	10/3		
	Bâtiment 53	10/3		
	Båtiment 58	10/3		
	Bâtiment 52	10/3		

DEFAUTS OU DYSFONCTIONNEMENTS DES DISPOSITIFS DE MESURE

mars 2015

	- j		I	
TYPE DE CONTROLE	PANNE CONSTATEE	N° DE LA FICHE	DATE ET HEURE UTC DES EVENEMENTS SUCCESSIFS	MESURE CONSERVATOIRE
	Station FAR2 et CLAMART Défaut « filtre percé »	FE 15/23	Le 9/3 à 21h46 et Le 11/3 à 23h22	Lors de la rotation du plateau des 2 BFSAB, les porte-filtre ne se sont pas positionnés correctement sous la voie de prélèvement. Remise en place et retour en bon fonctionnement immédiat.
Contrôle temps réel de la radioactivité dans	Station FAR2 « Défaut communication »	FE 15/18	Le 19/3 à 11h14	Perte de communication entre la station FAR2 et le TCE de 10:49 à 12:38 liée à une défaillance de la liaison spécialisée. Liaison rétablie elle-même. Les données sont archivées sur le PC local, l'ensemble des équipements est resté opérationnel.
l'environnement	Station Clamart « Défaut communication »	FE 15/26	Le 19/3 à 11h14	Absence d'enregistrement de données à du 21/3 à 11:41 au 23/3 à 08:54 sur le PC local. Conflit probable entre les TUT de la BFSAB et l'application TCE entraînant un plantage du PC local. Demande d'intervention auprès de la société en charge de la maintenance des TUT. Retour en bon fonctionnement le 23/3, l'ensemble des équipements est resté opérationnel durant cette interruption d'enregistrement.
Contrôle temps réel de la radioactivité dans	Données erronées des mesures bêta et gamma de l'EU du 7/3 à 10h20 au 8/3 08h20	FE 15/13	Le 8/3 à 08h20	Electronique du Cobenade non relancée à l'issue du nettoyage. Surveillance de l'EU assurée par le second report FLS lié au coffret en liaison directe. Surveillance radiologique des 2 émissaires opérationnelle.
l'égout urbain	Les valeurs indiquées par le pHmètre de l'EU sont surestimées (+ 0,5 unité pH par rapport aux mesures labo)	FE 15/14	Le 8/3 à 13h20	Etalonnage et CEP de la sonde pH Retour en bon fonctionnement le 24/3.
Centralisation des données environnementales	Coupure électrique générale des villes de Fontenay-aux-Roses, Bagneux et Clamart Absence de surveillance des stations de surveillance atmosphérique	FE 15/12	Le 4/3 de 04h06 à 06h21	Lors du retour de l'électricité le 4/3, remise en service de l'ensemble des équipements.
Surveillance en temps réel des rejets gazeux	Défaut sur les capteurs 18T3B et 18T3G	FC 15/167	Le 17/3 à 13h52	Remplacement d'un TUT le 18/3 et retour en bon fonctionnement. Arrêt des activités dans l'installation pendant toute la durée du défaut.

Légende : FC : Fiche de Constat

FE : Fiche d'Ecart

Annexe à la lettre réf : CEA/DSV/FAR/DIR/2015-054

Synthèse trimestrielle du registre pour les INB du CEA FAR

1^{er} trimestre 2015

En application du II de l'article 4.4.2 de l'arrêté du 7 février 2012 (arrêté INB) fixant les règles générales applicables aux installations nucléaires de base (INB) du Code de l'environnement, l'article 5.1.2 de la décision environnement (Arrêté du 9 août 2013 portant homologation de la décision 2013-DC-0360 de t'Autorité de sûreté nucléaire du 16 juillet 2013 relative à la maîtrise des nuisances et de l'impact sur la santé et l'environnement des installations nucléaires de base) précise les informations à reporter dans la synthèse du registre. Cette synthèse de périodicité trimestrielle est à transmettre à l'Autorité de sûreté nucléaire (ASN), à l'Agence Régionale de la Santé des Hauts-de-Seine et au service chargé de la police de l'eau.

Les limites réglementaires auxquelles sont soumises les INB sont référencées dans les arrêtés du 30 mars 1988 relatifs à l'autorisation de rejets d'effluents radioactifs liquides et gazeux par le CEA de Fontenay-aux-Roses ainsi que dans l'arrêté d'autorisation de déversement des eaux usées non domestiques dans le réseau d'assainissement du département des Hauts-de-Seine du 1^{er} mars 2011. Les prévisionnels de consommation d'eau et des rejet des INB du CEA FAR ont été transmis à l'ASN par courrier référencé DSV/FAR/DIR/CSMTQ/2015-361/LB du 16 février 2015.

Prélèvement d'eau

Les INB du CEA FAR n'effectuent pas de prélèvements d'eau de surface ou souterraine dans le milieu naturel.

Consommations d'eau

Les INB du CEA FAR utilisent pour leurs consommations propres des eaux provenant des réseaux de distribution d'eau potable. L'évolution des consommations mensuelles depuis le début de l'année et la comparaison au prévisionnel sont reportées dans le tableau ci-dessous.

INB	Janvier	Février	Mars	Consommation 1er trimestre 2015	Prévisionnel annuel 2015	% Prévisionnel
INB 165 (en m³)	127	84	152	363	2500	15 %
INB 166 (en m³)	168	95	175	438	2000	22 %

A la fin du 1^{er} trimestre 2015, aucune évolution notable n'est à signaler.

Rejets gazeux

L'évolution des rejets gazeux des INB du CEA FAR et la comparaison au prévisionnel de rejet sont reportés dans les tableaux ci-dessous.

INB	Janvier	Février	Mars	Rejet 1 ^{er} trimestre 2015	Prévisionnel annuel 2015	% Prévisionnel
Gaz rares (Bq)	<1,6.10 ¹¹	<1,6.10 ¹¹	<1,6.10 ¹¹	<4,8.10 ¹¹	<3.10 ¹²	16%
Aérosols beta (Bq)	4,1.10 ³	6,5.10 ³	4,4.10 ³	1,5.10 ⁴	1.10 ⁵	15 %
Halogènes (Bq)	1,7.10 ⁵	1,9.10 ⁵	2,8.10 ⁴	3,9.10 ⁵	9.10 ⁶	4,3 %

A la fin du 1^{er} trimestre 2015, aucune évolution notable n'est à signaler.

Transferts liquides

Les INB du CEA FAR transfèrent leur effluents par bâchées vers l'égout urbain via les émissaires 17 et 55. Ces rejets ne peuvent s'effectuer qu'après autorisation préalable. Ces effluents cheminent vers la station d'épuration d'Achères avant rejet dans l'environnement.

Aucun dépassement des limites réglementaires prescrites par l'arrêté du 30 mars 1988 n'a été constaté au cours du trimestre. Leur évolution n'appelle pas de commentaire particulier.

Au niveau physico-chimique, les prescriptions appliquées pour les transferts de cuves sont celles figurant dans l'arrêté d'autorisation de déversement des eaux usées non domestiques dans le réseau d'assainissement du département des Hauts-de-Seine du 1^{er} mars 2011.

Le transfert du 20/01/15 présentait une concentration pour le paramètre Fe+Al de 8 mg/l supérieure à la valeur réglementaire (5 mg/l).

Cependant, compte tenu du débit de rejet de la cuve et du débit observé à l'émissaire 17, la concentration en Fe+Al a été respectée au point de rejet. Ce dépassement n'a pas eu d'impact sur l'environnement.

Surveillance de l'environnement

Les résultats de la surveillance de la radioactivité de l'environnement transmis dans le cadre des registres mensuels sont également disponibles sur le site du Réseau National de Mesure de la radioactivité de l'environnement (RNM) conformément à l'article 4.2.4. Cet outil permet de suivre l'évolution pluriannuelle des paramètres surveillés pour chaque point de mesure.

Aucun résultat anormal concernant la surveillance de l'environnement n'est à signaler durant ce premier trimestre 2015.

Evènements notables ou points particuliers

Au 1^{er} avril 2015, les résultats des 3 premiers mois de l'année n'ont pas encore été transférés sur le site du RNM. L'outil du CEA permettant le transfert des données sur le site du RNM est en cours d'évolution pour prendre en compte le nouveau protocole du RNM.

Les problèmes informatiques rencontrés sont en cours de résolution et l'outil devrait être opérationnel très prochainement.

Aucun événement particulier n'est à signaler pour ce premier trimestre.