

COURRIER ARRIVE LE

2 1 JUIL, 2014

D.E.D.D. Nº 220

Monsieur Jean-Jacques Diana
Direction de l'environnement
et des situations d'urgence
Autorité de sûreté nucléaire
15 rue Louis Lejeune
CS 70013
92541 MONTROUGE Cedex

Fontenay-aux-Roses, le 11 juillet 2014

Objet: Contrôles mensuels du centre CEA/Far

N/Réf.: DSV/FAR/DIR/2014-068

Affaire suivie par Michel Iaremenko

2 01 46 54 77 42

Michel.iaremenko@cea.fr

Monsieur,

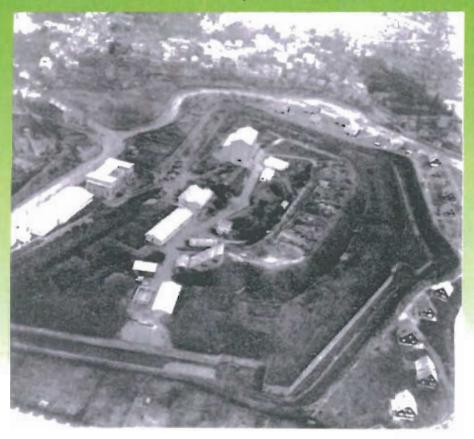
Je vous prie de bien vouloir trouver ci-joint, le bilan pour le mois de mai 2014 des résultats des contrôles effectués sur le centre CEA de Fontenay-aux-Roses, relatifs à la surveillance de l'environnement, des rejets liquides et gazeux et de l'appareillage.

Je vous en souhaite bonne réception et vous prie d'agréer, Monsieur, l'expression de mes salutations distinguées.

Didier Delmont

Directeur du CEA/Fontenay-aux-Roses par intérim

Direction des Sciences du Vivant


Centre de Fontenay-aux-Roses

Le Directeur

CENTRE DE FONTENAY-AUX-ROSES

Service de Protection contre les Rayonnements et de l'Environnement

Vue aérienne du CEA/FAR en 1950

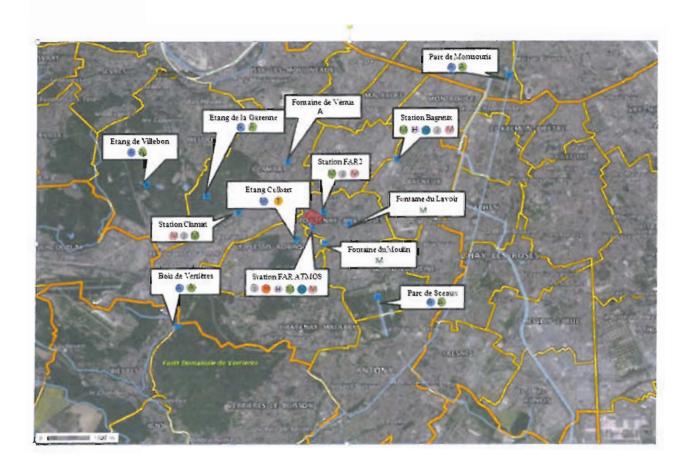
RESULTATS DES CONTROLES DE L'ENVIRONNEMENT

BILANS DES TRANSFERTS LIQUIDES ET DES REJETS GAZEUX

MAINTENANCE DE L'APPAREILLAGE MAI 2014

⇒ Plan de situation

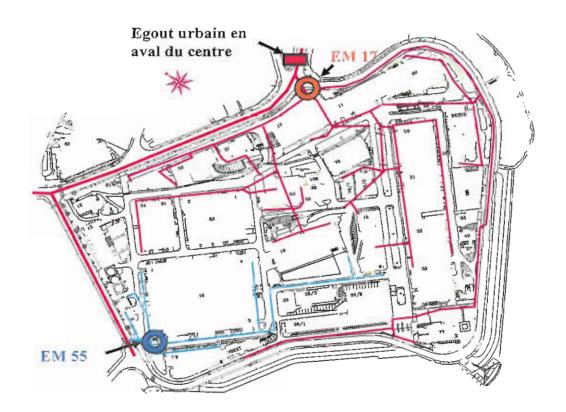
SOMMAIRE


La surveillance de l'environnement

⇒ Activité moyenne mensuelle des eaux de l'égout collecteur	Page 4
⇒ Contrôle du pH des eaux de l'égout collecteur	Page 5
⇒ Contrôle des boues de l'égout collecteur	Page 6
⇒ Analyse chimique des eaux des émissaires	Page 7
⇒ Contrôle des eaux de l'étang Colbert	Page 8
⇔ Contrôle des sédiments de l'étang Colbert	Page 9
⇒ Contrôle des eaux de résurgence	Page 10
⇒ Contrôle de la nappe phréatique	Page 11
⇒ Activité volumique α et β des poussières atmosphériques	Page 13
⇒ Activité volumique des précipitations atmosphériques	Page 17
⇒ Exposition ambiante	Page 18
⇒ Mesure de l'activité volumique en tritium dans l'atmosphère	Page 19
⇒ Mesure de l'activité volumique en ¹³¹ l dans l'atmosphère	Page 19
⇒ Contrôle des végétaux	Page 20
Transferts aux égouts et rejets atmosphériques	
⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
Composition chimiques des effluents rejetés	Page 24
Appareillage	
⇒ CEP - Etalonnage ⇒ Dispositif de mesure	Page 26 Page 27

Page 3

La Surveillance de l'environnement



ACTIVITE MOYENNE MENSUELLE DES EAUX DE L'EGOUT COLLECTEUR URBAIN

mai 2014

MESURE	1	Activité volumique oyenne mensuelle [Bq.l ⁻¹]	Limite de détection indicative [Bq.l ⁻¹]	Seuil de décision indicatif [Bq.l ⁻¹]
Radioactivité alpha	<	0,2	0,2	0,1
Radioactivité bêta	<	0,6	0,6	0,3
Radioactivité tritium	<	15	15	7,5
Volume d'effluents mesuré dans l'égout [m³]		14000		
Incertitude de mesure [m³]		1400		

Les analyses radiologiques effectuées sur les eaux sont conformes aux normes NF ISO 10704 et NF M 60-802-3

CONTROLE DU pH DES EAUX DE L'EGOUT DU COLLECTEUR URBAIN

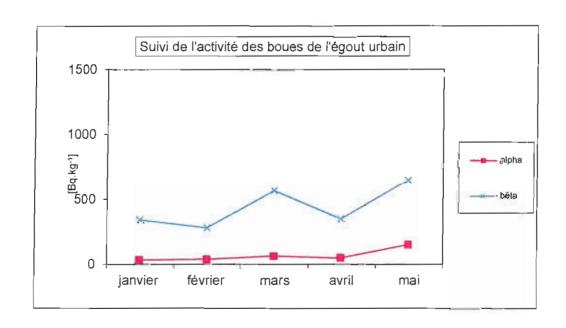
mai 2014

Data	Volume dans le	Moyenne	S'il y a lieu, valeur
Date	collecteur [m3]	journalière du pH*	du dépassement
1	1241	7,7	
2	331	8,3	
3	161	8,3	
4	170	8,3	
5	286	8,4	
6	319	8,4	
7	312	8,4	
8	418	8,0	
9	283	8,4	
10	686	8,0	
11	408	8,4	
12	494	8,6**	
13	365	8,4	
14	353	8,2	
15	331	8,6**	
16	307	8,3	
17	216	8,3	
18	235	8,3	
19	384	8,2	
20	665	8,2	
21	1754	8,1	
22	518	8,4	
23	571	8,2	
24	274	8,3	
25	617	8,1	
26	605	8,2	
27	394	8,4	
28	410	8,2	
29	307	7,8	
30	305	8,2	
31	262	8,1	
Total mensuel [m³]	14000		
Moyenne journalière [m³]	460		

^{*} Conformément à l'arrêté d'autorisation de déversement des eaux usées non domestiques dans le réseau public d'assainissement du 1^{er} mars 2011, le pH doit être compris entre 5,5 et 8,5.

^{**} Dépassements non imputables au centre.

CONTROLE DES BOUES DE L'EGOUT COLLECTEUR URBAIN


mai 2014

Matière sèche	alpha	bêta
Activité massique [Bq.kg ⁻¹]	151	656
Limite de détection [Bq.kg ⁻¹]	22	50
Seuil de décision [Bq.kg ⁻¹]	11	25

Détermination des radionucléides

Determination des ladionacierdes					
	Activité massique [Bq.kg ⁻¹]		Limite de	Seuil de	
Radionucléide			détection	décision	
			[Bq.kg ⁻¹]	[Bq.kg ⁻¹]	
⁶⁰ Co	<	2,5	2,5	1,25	
¹³⁷ Cs	<	3,2	3,2	1,60	
²⁴¹ Am	<	7,6	7,6	3,80	

Le traitement de la boue est effectué selon la norme NF M60-790 (norme sols)

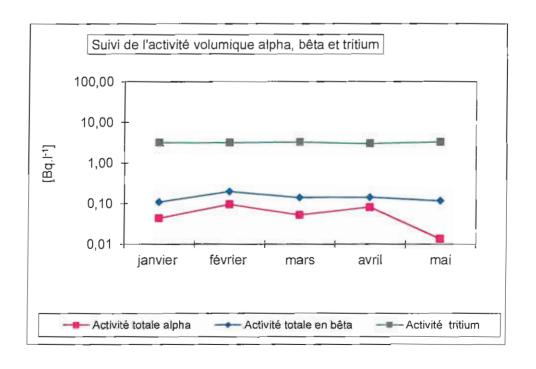
ANALYSES CHIMIQUES DES EAUX D'EGOUTS PRELEVEES AU NIVEAU DES EMISSAIRES

mai 2014

			Emissaire *		
			17	55	
			Date de pr	élèvement	
Paramètres	Unités	Valeurs limites	14/05/14	14/05/14	
рН	1	5,5< <8,5	8,2	8,6**	
MES	mg/l	600	486	71	
DCO	mg O2/l	2000	720	168	
DBO5	mg O2/I	800	340	85	
DCO/DBO5	1	2,5	2,1	2,0	
Azote Kjeldhal	mg N/I	150	<20	56	
Phosphore total	mg P/I	50	8,0	5,1	
Hydrocarbures totaux	mg/l	10	<3	<3	
Cyanures	mg/l	0,1	<0,04	<0,04	
Fluorures	mg/l	15	1,1	0,26	
Fer + Aluminium	mg/l	5	8,4**	<1,5	
Cuivre	mg/i	0,5	0,16	<0,13	
Zinc	mg/l	2	0,48	<0,25	
Nickel	mg/l	0,5	<0,25	<0,25	
Plomb	mg/l	0,5	<0,13	<0,13	
Chrome total	mg/l	0,5	<0,13	<0,13	
Cadmium	mg/l	0,2	<0,13	<0,13	
Agents de surface anioniques	mg/l	30			
Chrome hexavalent	mg/l	0,1			
Sulfates	mg/l	2000			
Argent	mg/l	0,5	Analyses semestrielles	Analyses semestrielles	
Arsenic	mg/l	0,05			
Etain	mg/l	2			
Manganèse	mg/l	1	4-17 1-17		
Indice phénol	mg/l	0,3	No. of the last of		

^{*} Résultats sur échantillon 24h mensuel, conformément à l'arrêté du 1er mars 2011

^{**} Dépassements d'origine inconnue


CONTROLE DES EAUX DE SURFACE DE L'ETANG COLBERT

mai 2014

Activité totale 40 K 3 H					рН
	alpha	bêta		³ H	
<	0,03	0,12	0,11	< 6,6	8,8
	Lin	nite de détectio	n indicative [Bq	.[-1]	
	0,04	0,08	0,03	7	
Seuil de décision indicatif [Bq.I ⁻¹]					
	0,02	0,04	0,02	3,5	

Détermination des radionucléides :

Radionucléide	Activité volumique [Bq.l ⁻¹]	Limite de détection [Bq.l ⁻¹]	Seuil de décision [Bq.l ⁻¹]
¹³⁴ Cs	< 0,09	0,09	0,04
¹³⁷ Cs	< 0,13	0,13	0,07
²⁴¹ Am	< 0,33	0,33	0,17

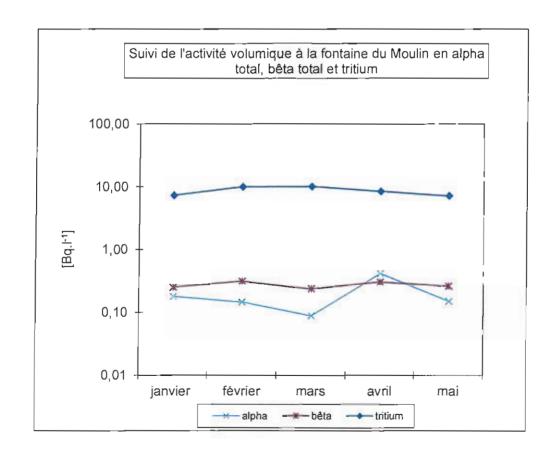
CONTROLE DES SEDIMENTS DE L'ETANG COLBERT

mai 2014

Matière sèche	alpha	bêta
Activité massique* [Bq.kg ⁻¹]	ND	ND
Limite de détection [Bq.kg ⁻¹]	1	1
Seuil de décision [Bq.kg ⁻¹]	1	1

Détermination des radionucléides

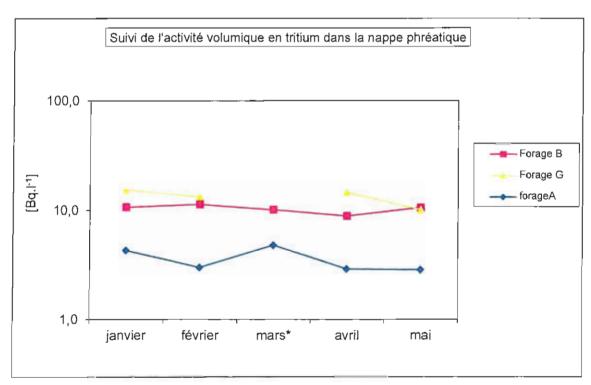
Radionucléide	Activité massique* [Bq.kg ⁻¹]	Limite de détection [Bq.kg ⁻¹]	Seuil de décision [Bq.kg ⁻¹]
⁷ Be	ND	/	1
⁴⁰ K	ND	/	/
⁶⁰ Co	ND	/	/
¹³⁴ Cs	ND	/	/ /
137Cs	ND	/	/
²¹⁰ Pb	NÐ	/	/
²⁴¹ Am	ND	/	/


^{*}Mesures trimestrielles (janvier, avril, juillet, octobre)

CONTRÔLE DES EAUX DE RESURGENCE

mai 2014

Origine	Activit	é totale	40K	3, ,	рН
	alpha	bêta	~K	³ H	
Fontaine du Lavoir	< 0,06	0,33	0,30	< 6,0	7,3
Fontaine du Moulin	0,15	0,26	0,20	7,2	7,3
Limite de détection indicative [Bq.l ⁻¹]	0,07	0,14	0,03	7,00	
Seuil décision indicatif [Bq.l ⁻¹]	0,04	0,07	0,02	3,50	

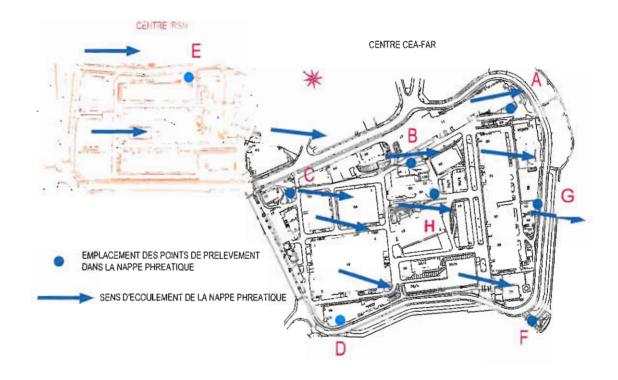


CONTROLE DE LA NAPPE PHREATIQUE

mai 2014

Point de prèlèvement	Activité totale		⁴⁰ K	³ H	pН
	alpha	bêta		H	
Α	0,14	0,12	0,09	< 5,7	6,8
В	0,17	0,15	0,04	10,5	7,0
С	0,05	< 0,06	0,05	5,8	7,5
F	0,52	0,34	0,16	< 5,9	6,2
G	0,18	0,18	0,05	10,1	6,9
Н	0,14	0,17	0,05	< 5,8	6,8
Limite de détection indicative [Bq.l ⁻¹]	0,04	0,08	0,03	7,00	
Seuil décision indicatif [Bq.[⁻¹]	0,02	0,04	0,02	3,50	

^{*}Suite aux travaux de rénovation du piézomètre, un coude s'est formé au niveau du tuyau d'exhaure empêchant la remontée d'eau et donc la réalisation du prélèvement du forage G en mars (cf FE 14/18).



CONTROLE DE LA NAPPE PHREATIQUE

mai 2014

Détermination des radionucléides

Radionucléide		Activité volumique [Bq.l ⁻¹]								Limite de détection	Seuil de décision			
Point de prélèvement		Α		В		С		F		G		Н	indicative [Bq.l ⁻¹]	indicatif [Bq.l ⁻¹]
¹³⁷ Cs	<	0,14	<	0,20	<	0,16	<	0,14	<	0,16	<	0,14	0,05	0,025
²⁴¹ Am	<	0,38	<	0,40	<	0,30	<	0,29	<	0,39	<	0,39	0,20	0,10

mai 2014

Station ATMOS

	_	A - 15 day - 10 f	A -11-114 (-21-
Date du		Activité alpha	Activité bêta
prélèvement		[µBq.m ⁻³]	[µBq.m ⁻³]
1	<	53	150± 46
2	<	50	248 ± 51
3		60 ± 31	500 ± 68
4		52 ± 28	580 ± 74
5	<	49	676 ± 81
_6	<	50	608 ± 76
7	<	42	14 <u>9 ± 45</u>
8	<	44	106 ± 43
9	<	50	201 ± 46
10	<	41	232 ± 48
11	<	48	105 ± 43
12	<	45	111 ± 44
13	<	56	< 84
14	<	46	117 ± 45
15	<	54	332 ± 56
16	<	52	242 ± 51
17		50 ± 28	461 ± 65
18		55 ± 30	596 ± 74
19		61 ± 31	611 ± 77
20		63 ± 31	346 ± 58
21	<	48	505 ± 69
22	<	50	239 ± 51
23	<	44	221 ± 49
24	<	45	185 ± 47
25	<	50	205 ± 47
26	<	47	262 ± 52
27	<	51	157 ± 46
28	<	49	204 ± 48
29	<	55	306 ± 53
30	<	51	337 ± 54
31	<	51	312 ± 55

Activité volumique moyenne (mBq.m⁻³) :

0,031

0,301

Activité volumique maximale (mBq.m⁻³):

0,063

0,676

mai 2014

Station Bagneux

Date du		Activité alpha	Activité bêta
prélèvement		[µBq.m ⁻³]	[µBq.m ⁻³]
1	<	57	171± 50
2	<	54	262 ± 55
3	<	52	583 ± 78
4	<	48	632 ± 81
5	<		738 ± 89
6	<	56	736 ± 90
7	<	49	162 ± 52
8	<	51	150 ± 50
9	<	58	263 ± 55
10	<	47	323 ± 58
11	<	56	120 ± 50
12	<	51	122 ± 50
13	<	63	119 ± 50
14	<	53	195 ± 54
15	<	62	400 ± 66
16	<	59	329 ± 61
17	<	50	583 ± 79
18		82 ± 39	773 ± 92
19		63 ± 35	672 ± 86
20	' <	50	354 ± 63
21		58 ± 33	611 ± 81
22	<	58	310 ± 61
23	<	51	255 ± 57
24	<	52	194 ± 53
25	<	58	248 ± 55
26	<	54	371 ± 64
27	<	59	223 ± 55
28		784 ± 250	1672 ± 170
29	<	64	366 ± 63
30	<	59	421 ± 65
31	<	60	42 <u>4</u> ± 68

Activité volumique moyenne (mBq.m⁻³) :

0,056

0,412

Activité volumique maximale (mBq.m-3) :

0,784

1,672

mai 2014

Station FAR 2

Date du		Activité alpha	Activité bêta
prélèvement		[µBq.m ⁻³]	[µBq.m ⁻³]
1	<	53	228± 50
2	<	50	245 ± 51
3		80 ± 37	575 ± 74
4		64 ± 32	639 ± 79
5		92 ± 40	738 ± 86
6	<	50	656 ± 80
7		62 ± 0	149 ± 46
8		74 ± 35	204 ± 49
9	<	52	227 ± 48
10		46 ± 26	300 ± 53
11	<	50	129 ± 45
12	<	46	135 ± 46
13	<	57	143 ± 47
14	<	47	146 ± 47
15		184 ± 68	557 ± 73
16	<	51	278 ± 52
17		175 ± 64	639 ± 79
18	<	48	700 ± 83
19		65 ± 0	749 ± 88
20		103 ± 42	408 ± 62
21		69 ± 34	596 ± 76
22		63 ± 33	294 ± 55
23	<	45	255 ± 52
24	<	46	168 ± 47
25	<	52	226 ± 50
26		159 ± 60	420 ± 54
27	<	53	185 ± 49
28	<	52	234 ± 51
29	<	57	383 ± 60
30	<	53	383 ± 59
31	<	53	364 ± 59

Activité volumique moyenne (mBq.m⁻³) :

0,055

0,366

Activité volumique maximale (mBq.m⁻³) :

0,184

0,749

mai 2014

Station Clamart

Date du	1	Activité alpha	Activité bêta
prélèvement		[µBq.m ⁻³]	[µBq.m ⁻³]
1	<	55	167± 49
2	<	49	267 ± 51
3	<	47	501 ± 68
4		73 ± 34	647 ± 80
5		51 ± 30	695 ± 84
6	<	50	622 ± 77
7	<	43	156 ± 47
8	<	45	135 ± 45
9	<	52	239 ± 49
10	<	43	290 ± 53
11	<	51	103 ± 45
12	<	46	107 ± 45
13	<	58	100 ± 45
14	<	47	152 ± 47
15	<	55	318 ± 56
16	<	53	289 ± 54
17		55 ± 29	485 ± 68
18		68 ± 35	764 ± 90
19	<	51	698 ± 86
20		47 ± 27	408 ± 63
21	<	49	524 ± 71
22	<	53	266 ± 54
23	<	47	227 ± 51
24	<	47	170 ± 48
25	<	53	203 ± 50
26	<	49	267 ± 54
27	<	53	162 ± 48
28	<	54	213 ± 52
29	<	61	359 ± 60
30	<	56	407 ± 62
31	<	56	317 ± 58

Activité volumique moyenne (mBq.m⁻³) :

0,031

0,331

Activitè volumique maximale (mBq.m⁻³):

0,073

0,764

ACTIVITE VOLUMIQUE DES PRECIPITATIONS ATMOSPHERIQUES

mai 2014

	Station ATMOS											
P	Période prélevée			Hauteur de pluie	Activité totale						рН	
				(mm)		alpha		bêta	1	³ H		
du	28/4	au	7/5	23,1	<	0,02	<	0,06	<	5,9	6,5	
du	7/5	au	15/5	22,6	<	0,03	<	0,06	<	5,7	6,5	
du	15/5	au	22/5	23,4		0,04		0,17	<	5,6	6,3	
du	22/5	au	28/5	16,3		0,03		0,12	<	5,6	6,7	

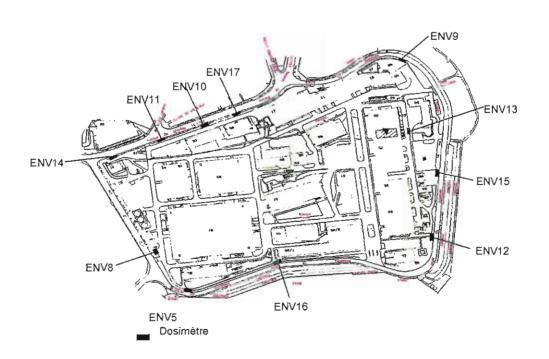
		Moyenne p	ondérée de
		ľactivi <u>té</u> volu	mique [Bq.l ⁻¹]
Hauteur de pluie totale	85,4	0,02	0,08

Les analyses radiologiques effectuées sur les eaux sont conformes aux normes NF M 60-800; NF M 60-801 et NF M 60-802.1

	Station BAGNEUX									
1				Hauteur de pluie		Activité Activité	рН			
				(mm)		alpha	bêta	³ H*		
du	28/4	au	7/5	22,5	<	0,02	0,06	_	6,3	
du	7/5	au	15/5	22,1	<	0,03	0,08	OBJET	7,0	
du	15/5	au	22/5	24,1		0,02	0,11	SANS O	6,5	
du	22/5	au	28/5	16,2		0,02	0,12	S _A	6,5	

		Moyenne pondérée de		
		ľactivité volu	mique [Bq.l ⁻¹]	
Hauteur de pluie totale	84,9	0,02	0,09	

	alpha	bêta	³ H
Limite de détection indicative [Bq.l ⁻¹]	0,04	0,08	7
Seuil de décision indicatif [Bg.l ⁻¹]	0,02	0,04	3,5


^{*}Seuls les prélèvements de la station ATMOS font l'objet d'une mesure tritium

EXPOSITION AMBIANTE

mai 2014

MES	MESURE MENSUELLE						
Point de Mesure	Résultat (bêta + X + gamma) (H*(10) en μSv)						
FAR-ATMOSPHERIQUE ENV3	65						
FAR 2 ENV4	79						
BAGNEUX ENV6	53						
CLAMART ENV7	74						
ENV5	61						
ENV8	57						
ENV9	76						
ENV10	56						
ENV11	62						
ENV12	65						
ENV13	60						
ENV14	63						
ENV15	58						
ENV16	47						
ENV17	54						

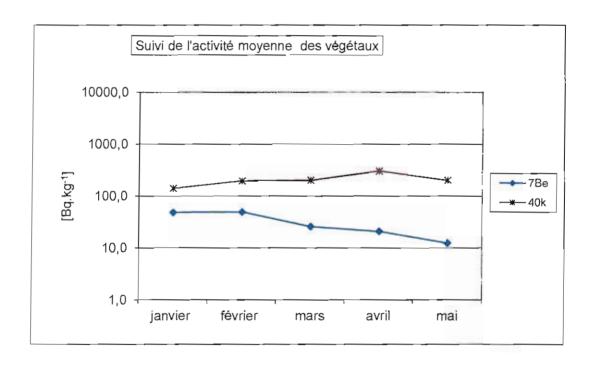
MESURE DE L'ACTIVITE VOLUMIQUE EN TRITIUM DANS L'ATMOSPHERE

mai 2014

Point de prélèvement	Valeur d'activité maximale sur le mois	Limite de détection indicative	Seuil de décision indicatif
	[Bq.m ⁻³]	[Bq.m ⁻³]	[Bq.m ⁻³]
FAR ATMOSPHERIQUE	< 0,2	0,3	0,15

MESURE DE L'ACTIVITE VOLUMIQUE EN 131 DANS L'ATMOSPHERE

	Valeur d'activité	Limite de	Seuil de
Doint do prélèvement	maximale sur le	détection	décision
Point de prélèvement	mois	indicative	indicatif
	[Bq.m ⁻³]	[Bq.m ⁻³]	[Bq.m ⁻³]
FAR ATMOSPHERIQUE	< 7,0E-04	3,0E-04	1,5E-04
BAGNEUX	< 7,7E-04	3,0E-04	1,5E-04



CONTROLE DES VEGETAUX DANS L'ENVIRONNEMENT

mai 2014

Mesure par spectrométrie gamma de la radioactivité des végétaux dans les stations de contrôle de l'environnement

Activi	Activité dans les végétaux frais [Bq.kg ⁻¹]						
Radionucléide	Limite de détection maximale	Moyenne	Maximum				
⁷ Be	27	12,5	16,0				
⁴⁰ K	66	202,5	220,0				
¹³⁷ Cs	3,7	< 3,7	< 3,7				
²⁴¹ Am	4,1	< 4,1	< 4,1				

Transferts aux égouts et rejets atmosphériques

⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
⇒ Composition chimique des effluents rejetés	Page 24

CONTROLE DES TRANSFERTS LIQUIDES ET DES REJETS ATMOSPHERIQUES

mai 2014

TRANSFERTS LIQUIDES (*) (**)

Emetteurs mesurés	Activité globale [Bq]	Limite de sensibilité [Bq.m ⁻³]
Alpha	< 1,3E+03	1,00E+03
Bêta	< 1,2E+03	2,00E+03
³ H	2,1E+04 ± 4,2E+03	2,00E+04
¹⁴ C	< 2,7E+04	2,00E+04

(*) Détails des transferts liquides : voir tableau joint page 23 (**) Composition chimique des effluents rejetés : voir tableau joint page 24

REJETS ATMOSPHERIQUES

Nombre de prélèvements supérieur à la limite de détection		Limite de détection indicative en alpha [Bq.m ⁻³]	Seuil de décision indicatif [Bq.m ⁻³]	
192 0		2,0E-04	1,0E-04	

Elements mesurés	Activité globale [Bq]	Limite de détection indicative [Bq.m ⁻³]	Seuil de décision indicatif [Bq.m ⁻³]	
Gaz (Eq, Kr-85)	< 1,6E+11	3,0E+04	1,5E+04	
Halogènes	3,2E+05	5,0E-03	2,5E-03	
Aérosols bêta	5,8E+03	5,0E-04	2,5E-04	

ETAT DES TRANSFERTS LIQUIDES AU CEA/Fontenay-aux-Roses

mai 2014

Date	Oriç	gine	Volume	Durée	Débit rejet	Debit égout	Activité rejetée [Bq]				Principaux radionucléides	
rejet	Bât	Cuve n°	[m³]	[h]	[m³ h-1]		Alpha	Béta	¹⁴ C	³ H	Emetteur alpha	Emetteur bêta
12	50	1	3	1,5	2	20	< 1,3E+03	< 1,2E+03	< 2,7E+04	2,1E+04	1	1

COMPOSITION CHIMIQUE DES EFFLUENTS REJETES PAR LES CUVES DE LABORATOIRE

mai 2014

Date de rejet	Bât	Cuve nº	Volume [m³]	рН			DBO5 (mg/l)				HT (mg/l)	F (mg/l)
12	50	1	3	7,6	<10	<20	<25	/	<20	<2,5	<3	<0,25

Date de rejet	Bât	Cuve n°	Volume [m³]	Fe +Al (mg/l)	Cu (mg/l)	Zn (mg/l)	Ni (mg/l)	Pb (mg/l)	Cr (mg/l)	Cd (mg/l)
12	50	1	3	<1,5	<0,13	0,99	<0,25	<0,13	<0,13	<0,13

Appareillage

⇒ CEP - Etalonnage

Page 26

⇒ Dispositif de mesure

Page 27

SUIVI DES ETALONNAGES ET DES CEP

mai 2014

TYPE DE CONTROLE	APPAREIL	Е	DATE	OBSERVATIONS
TIPE DE CONTROLE	AFFAREIL	CEP	ETALONNAGE	OBSERVATIONS
	BFSAB ATMOS	27/5		
Activité volumique alpha et bêta des poussières	BFSAB Bagneux	27/5		
atmosphériques	BFSAB Clamart	27/5		
	BFSAB FAR 2	27/5		
	COBENADE	5/5		
Surveillance en temps réel de l'activité dans l'égout urbain	Sonde pH du 17, 55 et EU	5/5		
r egout urbani	Sonde gamma du 17 et 55	5/5		
	Bâtiment 18 tranche 1	15/5		
	Bâtiment 18 tranche 2	21/5		
	Bâtiment 18 tranche 3	15/5		
Surveillance en temps	Bâtiment 18 tranche 4	15/5		
réel des rejets gazeux	Bâtiment 10	14/5		
	Bâtiment 50	14/5		
	Bâtiment 53	14/5		
	Bâtiment 58	14/5		
	Bâtiment 52	23/5		

DEFAUTS OU DYSFONCTIONNEMENTS DES DISPOSITIFS DE MESURE

mai 2014

TYPE DE CONTROLE	PANNE CONSTATEE	N° DE LA FICHE	DATE ET HEURE UTC DES EVENEMENTS SUCCESSIFS	MESURE CONSERVATOIRE		
Contrôle temps réel de la radioactivité dans l'environnement			RAS			
Contrôle temps réel de la radioactivité dans l'égout urbain	Egout Urbain Défaut « bac décantation »	FE 14/33	Le 28/05 à 07h13	La vanne de vidange du bac décantation alimentant en eau les équipements est restée ouverte, à l'issue du neltoyage quotidien du réseau EU réalisé par le prestataire. Fermeture immédiate de la vanne. Sensibilisation du prestataire par une nouvelle formation et évaluation de celui-ci.		
Centralisation des données environnementales	RAS					
Surveillance en temps réel des rejets gazeux	RAS					

Légende : FC : Fiche de Constat

FE : Fiche d'Ecart