

CENTRE DE FONTENAY-AUX-ROSES

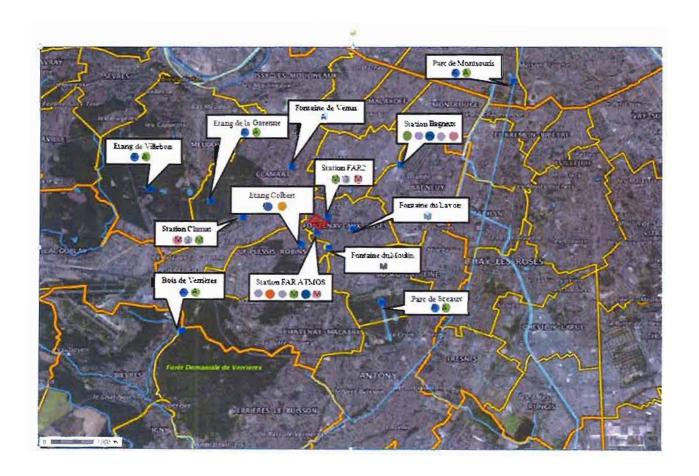
Service de Protection contre les Rayonnements et de l'Environnement

Eaux de surface, Vénus à Clamart

RESULTATS DES CONTROLES DE L'ENVIRONNEMENT

BILANS DES TRANSFERTS LIQUIDES ET DES REJETS GAZEUX

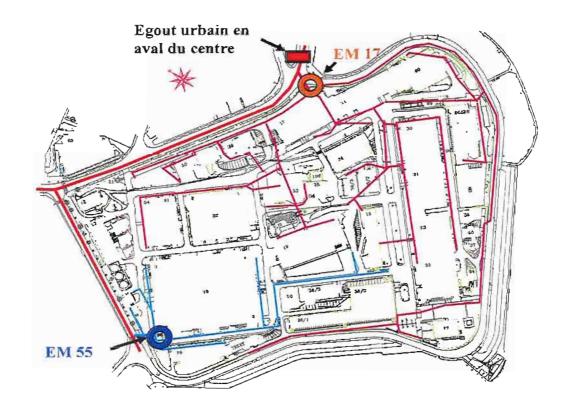
MAINTENANCE DE L'APPAREILLAGE
JANVIER 2015


SOMMAIRE

La surveillance de l'environnement

⇒ Plan de situation	Page 3
⇒ Activité moyenne mensuelle des eaux de l'égout collecteur	Page 4
⇔ Contrôle du pH des eaux de l'égout collecteur	Page 5
Contrôle des boues de l'égout collecteur	Page 6
⇒ Analyse chimique des eaux des émissaires	Page 7
⇒ Contrôle des eaux de l'étang Colbert	Page 8
⇒ Contrôle des sédiments de l'étang Colbert	Page 9
⇒ Contrôle des eaux de résurgence	Page 10
⇒ Coлtrôle de la nappe phréatique	Page 11
⇒ Activité volumique α et β des poussières atmosphériques	Page 13
⇒ Activité volumique des précipitations atmosphériques	Page 17
⇒ Exposition ambiante	Page 18
⇒ Mesure de l'activité volumique en tritium dans l'atmosphère	Page 19
⇒ Mesure de l'activité volumique en ¹³¹ l dans l'atmosphère	Page 19
⇒ Contrôle des végétaux	Page 20
Transferts aux égouts et rejets atmosphériques	
⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
⇒ Composition chimiques des effluents rejetés	Page 24
Appareillage	
⇒ CEP - Etalonnage ⇒ Dispositif de mesure	Page 26 Page 27

La Surveillance de l'environnement



ACTIVITE MOYENNE MENSUELLE DES EAUX DE L'EGOUT COLLECTEUR URBAIN

janvier 2015

MESURE	Activité volumique moyenne mensuelle [Bq.l ⁻¹]		Limite de détection indicative [Bq.Γ¹]	Seuit de décision indicatif [Bq.t ⁻¹]
Radioactivité alpha	<	0,2	0,2	0,1
Radioactivité bêta	<	0,6	0,6	0,3
Radioactivité tritium	<	15	15	7,5
Volume d'effluents mesuré dans l'égout [m³]			122	200
Incertitude de mesure (m³]		12	.00	

Les analyses radiologiques effectuées sur les eaux sont conformes aux normes NF ISO 10704 et NF M 60-802-3

CONTROLE DU pH DES EAUX DE L'EGOUT DU COLLECTEUR URBAIN

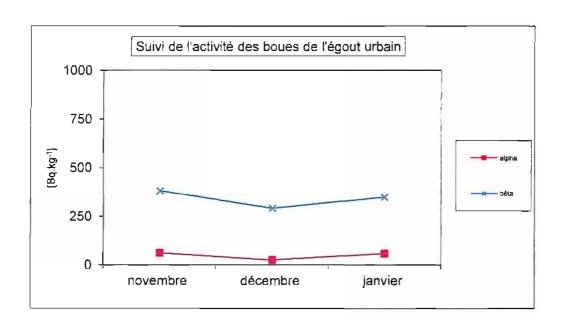
janvier 2015

Deta	Volume dans le	Moyenne	S'il y a lieu, valeur
Date	collecteur [m³]	journalière du pH*	du dépassement
1	194	8,4	11,1**
2	209	8,1	
3	708	7,8	
4	235	8,1	
5	310	8.3	
6	350	8,6	10,3**
7	338	8,5	
8	614	8,8	9,4**
9	430	8,4	
10	456	8,1	
11	194	8,3	
12	307	8,4	
13	410	8,3	
14	490	8,3	
15	427	8,3	
16	475	8,2	
17	216	8,3	
18	197	8,4	
19	322	8,4	
20	319	8,4	
21	322	8,3	
22	312	7,9	
23	254	8,1	
24	310	8,2	
25	170	8,3	
26	422	8,4	
27	348	8,5	
28	475	8,4	
29	842	8,1	
30	809	8,2	
31	674	8,4	
Total mensuel [m³]	12200		
Moyenne journalière (m³]	390		

^{*} Conformément à l'arrêté d'autorisation de déversement des eaux usées non domestiques dans le réseau public d'assainissement du 1^{er} mars 2011, le pH doit être compris entre 5,5 et 8,5.

^{**} Une défaillance du pH-mètre du bât 60 (installation PRION) est à l'origine de dépassements à l'émissaire 17 ayant un impact sur les valeurs pH de l'Egout Urbain (cf FE 15/01).

CONTROLE DES BOUES DE L'EGOUT COLLECTEUR URBAIN


janvier 2015

Matière sèche	alpha	bêta
Actívité massique [Bq.kg ⁻¹]	57	349
Limite de détection [Bq.kg ⁻¹]	20	71
Seuil de décision [Bq.kg ⁻¹]	10	36

Détermination des radionucléides

Radionucléide	Activité massique	Limite de détection	Seuil de décision	
	[Bq.kg ⁻¹]	[Bq.kg ⁻¹]	[Bq.kg ⁻¹]	
⁸⁰ Co	< 2.4	2.4	1.2	
¹³⁷ Cs	7.6	4.3	2.2	
²⁴¹ Am	< 4.4	4.4	2.2	

La mesure de la boue est effectuée selon la norme NF M60-790 (norme sols)

ANALYSES CHIMIQUES DES EAUX D'EGOUTS PRELEVEES AU NIVEAU DES EMISSAIRES

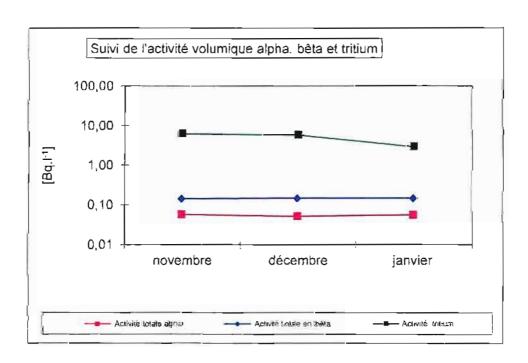
janvier 2015

			Emiss	saire *	
			17	55	
		_	Date de prélèvement		
Paramètres	Unités	Valeurs limites	07/01/15	07/01/15	
рН	1	5,5< <8,5	8,6**	8,5	
MES	mg/l	600	295	37	
DCO	mg O2/I	2000	393	103	
DBO5	mg O2/1	800	150	45	
DCO/DBO5	1	2,5	2,62***	2,3	
Azote Kjeldhal	mg N/I	150	29	46	
Phosphore total	mg P/I	50	8,5	2.8	
Hydrocarbures totaux	mg/l	10	<3	<3	
Cyanures	mg/l	0,1	<0,04	<0.04	
Fluorures	mg/l	15	0,25	<0,25	
Fer + Aluminium	mg/l	5	<1,5	<1,5	
Cuivre	mg/l	0,5	<0,13	0,16	
Zinc	mg/l	2	<0,25	<0,25	
Nickel	mg/l	0,5	<0,25	<0,25	
Plomb	mg/l	0,5	<0,13	<0,13	
Chrome total	mg/l	0,5	<0,13	<0,13	
Cadmium	mg/l	0,2	<0,13	<0,13	
Agents de surface anioniques	mg/l	30			
Chrome hexavalent	mg/l	0,1	Chick State		
Sulfates	mg/l	2000		THE PARTY OF THE P	
Argent	mg/l	0,5	Analyses semestrielles	Analyses semestrielles	
Arsenic	mg/l	0,05			
Etain	mg/l	2			
Manganèse	mg/l	1			
Indice phénoi	mg/l	0,3			

^{*} Résultats sur échantillon 24h mensuel, conformément à l'arrêté du 1er mars 2011.

^{**}Une défaillance du pH-mètre du bât 60 (installation PRION) est à l'origine du dépassement (cf FE 15/01).

^{***}Dépassement du rapport DCO/DBO5 mais les valeurs en DCO et DBO5 restent inférieures aux seuils réglementaires.


CONTROLE DES EAUX DE SURFACE DE L'ETANG COLBERT

janvier 2015

Activi	Activité totale 40K 3H					
alpha	béta	K	П			
0,06	0,15	0,11	< 6,0	7,7		
Lin	nite de détectio	n indicative [Bq	.[1]			
0,04	0,08	0,03	0,03 7			
0,02	0,04	0,02	3,5			

Détermination des radionucléides :

Radionucléide	Activítě volumique [Βq,Γ¹)	Limite de détection (Bq.ſ¹}	Seuil de décision [Bq.l ⁻¹]
¹³⁴ Cs	< 0,08	80,0	0,04
¹³⁷ Cs	¹³⁷ Cs < 0,20		0,10
²⁴¹ Am	< 0,19	0,19	0,10

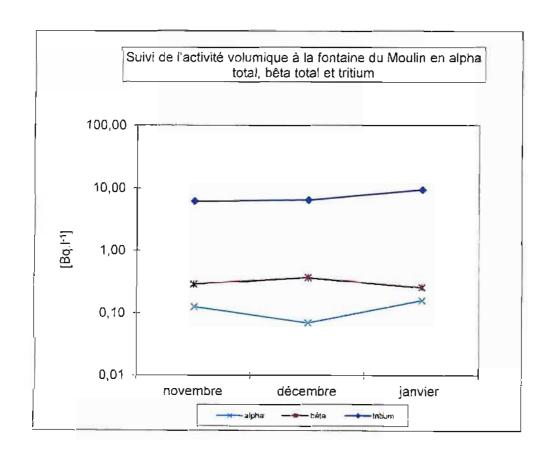
CONTROLE DES SEDIMENTS DE L'ETANG COLBERT

janvier 2015

Matière sèche	alpha	bêta
Activíté massique* [Bq.kg ⁻¹]	367	1580
Limite de détection [Bq.kg ⁻¹]	22	55
Seuil de décision [Bq.kg ⁻¹]	11	28

Détermination des radionucléides

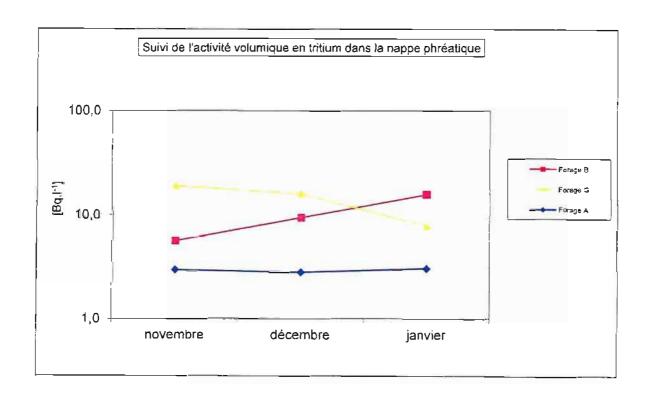
Radionucléide	ma	sctivité issique* sq.kg ⁻¹]	Limit détec [Bq.l		déd	uil de cision .kg ⁻¹]
⁷ Be		253	4	3		22
⁴⁰ K		349	7	5		38
⁶⁰ Со	<	4,5	4.	5	2	2,3
¹³⁷ Cs		31	5,	,5	2	2,8
²¹⁰ Pb		394	8	7		44
²⁴¹ Am	<	6,5	6,	5		3,3


^{*}Mesures trimestrielles (janvier, avril, juillet, octobre)

CONTRÔLE DES EAUX DE RESURGENCE

janvier 2015

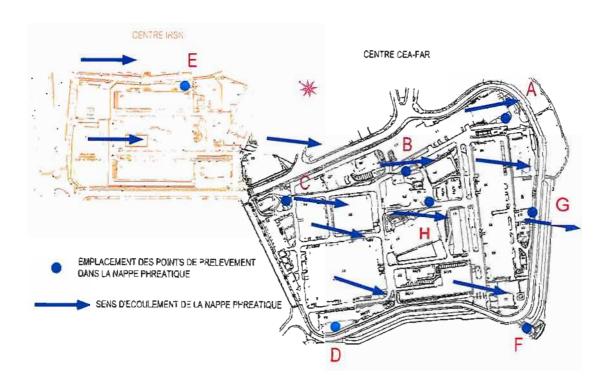
	Activité volumique [Bq.l ⁻¹]					
Origine	Activite	ctivité totale		3, ,	рН	
	alpha	béta	⁴⁰ K	³ H		
Fontaine du Lavoir	0,14	0,31	0,30	< 5,9	7,2	
Fontaine du Moulin	0,16	0,26	0,20	9,3	7,7	
Limite de détection indicative [Bq.Γ¹]	0,07	0,14	0,03	7,00		
Seuil décision indicatif [Bg.[¹]	0,04	0,07	0,02	3,50		



CONTROLE DE LA NAPPE PHREATIQUE

janvier 2015

_	Activité volumique [Bq. [-1]					
Point de prélèvement	Activite	Activité totale		⁴⁰ K ³ H		
	alpha	bêta	-K	³ H		
A	0,19	0,25	80,0	< 6,1	6,6	
В	0,14	0,19	0,06	15,6	7,4	
С	0,16	0,12	0,06	< 6,0	7,3	
F	0,50	0,35	0,16	< 5,8	6,1	
G	0,17	0,16	0,05	7,8	6,8	
н	0,20	0,20	0,05	< 5,7	6,7	
Limite de détection indicative	0,04	80,0	0,03	7,00		
Seuil décision indicatif [8q.] ⁻¹]	0,02	0,04	0,02	3,50		



CONTROLE DE LA NAPPE PHREATIQUE

janvier 2015

Détermination des radionucléides

Radionucłéide		Activité volumique [Bq.l ⁻¹]								Limite de détection	Seuil de décision			
Point de prélèvement		А		В		С		F		G		Н	indicative [8q,F ¹]	indicatif [Bq.f ⁻¹]
¹³⁷ Cs	<	0,13	<	0,14	<	0,05	<	0,06	<	0,16	<	0,12	0,05	0,025
²⁴¹ Am	<	0,31	<	0,16	<	0,60	<	0,80	<	0,38	<	0,44	0,20	0,10

janvier 2015

Station ATMOS

Date du	Activité alpha	Activité bêta
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
	< 52	524± 69
1 2	< 49	562 ± 71
3	< 49	137 ± 43
4		218 ± 47
5		
<u>6</u> 7	< 54	306 ± 60
	< 60	199 ± 54
8	< 55	389 ± 64
9	< 53	155 ± 51
10	< 62	< 94
11	< 56	217 ± 54
12	< 51	< 119
13	< 59	391 ± 66
14	< 44	< 96
15	< 50	347 ± 64
16	< 51_	321 ± 61
17	< 55	165 ± 51
18	< 52	267 ± 57
19	< 57	< 121
20	< 54	207 ± 55
21	< 54	522 ± 46
22	< 71	758 ± 93
23	< 65	633 ± 87
24	< 63	372 ± 66
25	< 65	312 ± 61
26	< 64	< 123
27	< 60	130 ± 54
28	< 57	214 ± 55
29	< 61	256 ± 58
30	71 ± 38	256 ± 59
31	< 53	< 100

Activité volumique moyenne (mBq.m⁻³) :

0,029

0,266

Activité volumique maximale (mBq.m⁻³):

0,071

0,758

Limite de détection indicative ALPHA [μ Bq.m⁻³] : 40 Limite de détection indicative BETA [μ Bq.m⁻³] : 100 Seuil de décision indicatif ALPHA [μ Bq.m⁻³] : 20 Seuil de décision indicatif BETA [μ Bq.m⁻³] : 50

janvier 2015

Station Bagneux

Data du	Activité alpha	Activité bêta
Date du	1 1	II . I
prélèvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	62 ± 35	614± <u>79</u>
2	< 54	564 ± 75
3	< 46	196 ± 50
4	< 44	267 ± 5 <u>3</u>
5 00:00 au 6 19:05*	51 ± 23	211 ± 39
6 19:05 au 7 00:00*	< 239	< 424
7	< 56	208 ± 51
8	< 52	359 ± 60
9	< 50	153 ± 48
10	< 59	< 89
11	< 52	245 ± 53
12	< 47	< 111
13	< 55	380 ± 62
14	< 41	< 89
15	< 46	303 ± 51
16	< 48	357 ± 61
17	< 51	183 ± 49
18	< 48	232 ± 52
19	< 53	< 113
20	< 51	210 ± 52
21	< 49	494 ± 70
22	< 70	715 ± 90
23	< 55	800 ± 95
24	< 59	345 ± 61
25	< 62	223 ± 54
26	< 60	< 116
27	< 56	161 ± 53
28	< 53	159 ± 49
29**	< 35	< 79
30	< 53	131 ± 49
31 de 00:00 à 08:24***	< 140	< 260
31 08:24 au 01/02 00:00	< 98	< 185

Activité volumique moyenne (mBq.m⁻³) :

0.033

0.258

0.800

Activité volumique maximale (mBq.m⁻³): 0.062

Limite de détection indicative ALPHA [μBq.m⁻³] : 40 Limite de détection indicative BETA [μBq.m⁻³] : 100 Seuil de décision indicatif ALPHA [μBq.m⁻³] : 20 Seuil de décision indicatif BETA [μBq.m⁻³] : 50

^{*} Absence de rotation du plateau de la BFSAB (cf FE 15/06).

^{**} Filtre repassé sous la voie d'aspiration le 2/2 de 00:00 à 11:05 (cf FE 15/16).

^{***} Suite à une valeur élevée en bêta naturel direct au TCE, mise en place neuf (cf FE 15/07).

janvier 2015

Station FAR 2

			1
Date du		Activité alpha	Activité bêta
prélèvement		[µBq.m ⁻³]	[µBq.m ⁻³]
1	<	54	598± 76
2		101 ± 43	557 ± 72
3	<	43	160 ± 45
4	<	42	221 ± 49
5	<	51	< 107
6 00:00 au 7 09:46*	<	34	202 ± 38
7 09:46 au 8 00:00*		438 ± 16	479 ± 97
8		151 ± 57	469 ± 66
9		71 ± 34	173 ± 46
10	<	<u>5</u> 4	< 82
11	<	49	205 ± 48
12	<	45	< 104
13	<	51	378 ± 60
14		80 ± 35	128 ± 45
15		138 ± 53	423 ± 64
16		65 ± 32	317 ± 56
17	<	49	149 ± 46
18		50 ± 29	238 ± 51
19	<	50	< 106
20		55 ± 31	264 ± 53
21		51 ± 29	547 ± 73
22		458 ± 153	1112 ± 121
23**		1023 ± 328	1529 ± 156
24		216 ± 78	487 ± 69
25	<	58	233 ± 52
26	<	57	< 108
27		110 ± 46	202 ± 52
28	<	50	211 ± 50
29	<	53	226 ± 51
30	<	50	105 ± 45
31	<	46	91 ± 45

Activité volumique moyenne (mBq.m⁻³) :

0.110

0.321

Activité volumique maximale (mBq.m⁻³):

1,023

1.529

Limite de détection indicative ALPHA [μ Bq.m⁻³] : 40 Limite de détection indicative BETA [μ Bq.m⁻³] : 100 Seuil de décision indicatif ALPHA [μ Bq.m⁻³] : 20 Seuil de décision indicatif BETA [μ Bq.m⁻³] : 50

^{*} Absence de rotation du plateau de la BFSAB (cf FE 15/15).

^{**} Mesure du filtre par spectrométrie gamma , radioactivité d'origine naturelle

janvier 2015

Station Clamart

Date du	Activité alpha	Activité bêta
prėlėvement	[µBq.m ⁻³]	[µBq.m ⁻³]
1	< 49	521± 67
2	< 46	442 ± 61
3	< 39	124 ± 41
4	< 39	243 ± 47
5	< 45	< 96
6	< 45	218 ± 48
7	< 49	124 ± 42
8	< 45	291 ± 51
9	< 44	118 ± 42
10	< 52	< 79
11	< 46	176 ± 45
12	< 42	< 98
13_	< 48	297 ± 53
14	< 36	< 79
15	< 41	256 ± 51
16	< 42	253 ± 50
17	< 45	116 ± 41
18	< 42	208 ± 46
_19	< 46	< 98
20	< 44	211 ± 47
21	< 43	478 ± 65
22	< 57	643 ± 78
23	< 53	576 ± 75
24	< 51	217 ± 48
25	< 53	241 ± 49
26	< 52	< _100
<u>2</u> 7	< 49	134 ± 46
28	< 46	195 ± 46
29	<49	189 ± 46
30	< 46	105 ± 42
31	< 42	81 ± 41

Activité volumique moyenne (mBq.m⁻³) :

0,023

0,217

Activité volumique maximale (mBq.m-3):

<0,057

0,643

Limite de détection indicative ALPHA [μ Bq.m⁻³] : 40 Limite de détection indicative BETA (μ Bq.m⁻³] : 100 Seuil de décision indicatif ALPHA (μ Bq.m⁻³] : 20 Seuil de décision indicatif BETA [μ Bq.m⁻³] : 50

ACTIVITE VOLUMIQUE DES PRECIPITATIONS ATMOSPHERIQUES

janvier 2015

	Station ATMOS										
				Hauteur de pluie	Activité volumique [Bq.l ⁻¹] Activité totale					рН	
				(mm)		alpha	bêta	*H			
du	29/12	au	15/1	15.9	٧	0.03	0.06	<	5.8	6.2	
du	15/1	au	22/1	4.6	<	0.03	0.10	<	5.7	5.9	
dυ	22/1	au	29/1	12.7	<	0.02	0.07	<	6.2	6.2	

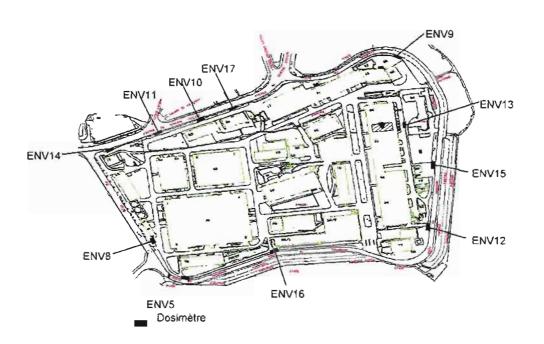
		Moyenne pondérée de		
		l'activité volumique [Bq. [1]]		
Hauteur de pluie totale	33.2	<	0.01	0.07

Les analyses radiologíques effectuées sur les eaux sont conformes aux normes NF M 60-800; NF M 60-801 et NF M 60-802.1

	Station BAGNEUX										
Hauteur Période prélevée de pluie						Activ Activite	На				
				(mm)		alpha bêta					
dυ	29/12	au	15/1	12.3	<	0.03	<	0.06	ΕΤ	6.6	
du	15/1	au	22/1	4.1	<	0.03		0.07	; OBJET	6,5	
ďu	2 2/1	au	29/1	10.3	<	0.02	<	0.06	SANS	6.6	

			Moyenne p	ondérèe de
	l'activité volumique [Bq.			
Hauteur de pluie totale	26.7	<	0.01	0.04

	alpha	bêta	³ H
Limite de détection indicative [Bq.l ⁻¹]	0.04	0.08	7
Seuil de décision indicatif	0.02	0.04	3.5


^{*}Seuls les prélèvements de la station ATMOS font l'objet d'une mesure tritium

EXPOSITION AMBIANTE

janvier 2015

MESURE MENSUELLE							
Point de Mesure	Résultat (bêta + X + gamma) (H*(10) en μSv)						
FAR-ATMOSPHERIQUE ENV3	67						
FAR 2 ENV4	89						
BAGNEUX ENV6	96						
CLAMART ENV7	118						
ENV5	79						
ENV8	64						
ENV9	76						
ENV10	72						
ENV11	68						
ENV12	74						
ENV13	88						
ENV14	83						
ENV15	65						
ENV16	70						
ENV17	60						

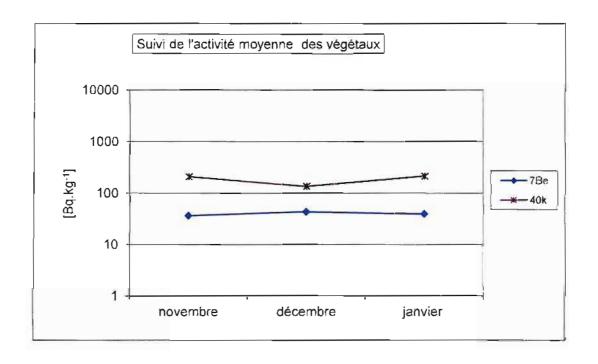
MESURE DE L'ACTIVITE VOLUMIQUE EN TRITIUM DANS L'ATMOSPHERE

janvier 2015

	Valeur d'a maximale		Limite de détection	Seuil de décision
Point de prélèvement	moi: [Bq.m	- l	indicative [Bq.m ⁻³ i	indicatif [Bg.m ⁻³]
FAR ATMOSPHERIQUE	< 0,	,2	0,3	0,15

MESURE DE L'ACTIVITE VOLUMIQUE EN 131 DANS L'ATMOSPHERE

	Valeur d'activité	Limite de	Seuil de
Deiet de antille annuel	maximale sur le	détection	décision
Point de prélèvement	mois	indicative	índicatif
	[Bq.m ⁻³]	[Ba.m ⁻³]	ſBq.m ⁻³ l
FAR ATMOSPHERIQUE	< 4,1E-04	3,0E-04	1,5E-04
BAGNEUX	< 3,8E-04	3,0E-04	1,5E-04



CONTROLE DES VEGETAUX DANS L'ENVIRONNEMENT

janvier 2015

Mesure par spectrométrie gamma de la radioactivité des végétaux dans les stations de contrôle de l'environnement

Activité dans les végétaux fraís [Bq.kg ⁻¹]							
Radionucléide	Limite de Radionucléide détection Moyenne Maxim maximale						
⁷ Be	36	40	51				
⁴⁰ K	71	213	240				
¹³⁷ Cs	3.3	< 3.3	< 3.3				
²⁴¹ Am	3.0	< 3.0	< 3.0				

Transferts aux égouts et rejets atmosphériques

⇒ Contrôle des transferts liquides et des rejets atmosphériques	Page 22
⇒ Etat des transferts liquides au CEA Fontenay-aux-Roses	Page 23
⇒ Composition chimique des effluents rejetés	Page 24

CONTROLE DES TRANSFERTS LIQUIDES ET DES REJETS ATMOSPHERIQUES

janvier 2015

TRANSFERTS LIQUIDES (*) (**)

Emetteurs mesurés	Activité globale [Bq]	Limite de sensibilité [Bq.m ⁻³]
Alpha	< 5,8E+03	1,00E+03
Bêta	2,3E+04 ± 4,6E+03	2,00E+03
³ H	< 8,3E+05	2,00E+04
¹⁴ C	< 3,0E+05	2,00E+04

(*) Détails des transferts liquides : voir tableau joint page 23 (**) Composition chimique des effluents rejetés : voir tableau joint page 24

REJETS ATMOSPHERIQUES

Nombre de	Nombre de prélèvements	Limite de détection	Seuil de décision
prélèvements	supérieur à la limite de	indicative en alpha	indicatif
concernés	détection	[Bq.m ⁻³]	[Bq.m ⁻³]
175	0	2,0E-04	1,0E-04

Elements mesurés	Activité globale [Bq]	Limite de détection indicative [Bq.m ⁻³]	Seuil de décision indicatif [Bq.m ⁻³]
Gaz (Eq, Kr-85)	< 1,6E+11	3,0E+04	1,5E+04
Halogènes	1,7E+05	5,0E-03	2,5E-03
Aérosols bêta	4,1E+03	5,0E-04	2,5E-04

ETAT DES TRANSFERTS LIQUIDES AU CEA/Fontenay-aux-Roses

janvier 2015

Date du	Orig	gine	Volume [m³]		Débit Débit rejet égout -		The state of the s				rejetée [q]			ipaux icléides
rejet	Bat.	Cuve n°			1115557157	égout [m³.h-1]	Alpha	Bêta	14C	3H	Emetteur alpha	Emetteur bêta		
6 au 14	18	4	75,5	56	1,3	20	< 1,1E+04	2.2E+04	< 6,0E+05	< 1,6E+06	²⁴¹ Am	1		
20	50	4	4	4	1	10	< 3,7E+02	1,4E+03	< 7,2E+03	< 7,2E+04	1	1		

COMPOSITION CHIMIQUE DES EFFLUENTS REJETES PAR LES CUVES DE LABORATOIRE

janvier 2015

Date de rejet	Bât	Cuve n°	Volume [m³]	рН	MES (mg/l)	DCO (mg/l)	DBO5 (mg/l)	DCO/ DBO5	NTK (mg/l)	Pt (mg/l)	HT (mg/l)	F (mg/l)
6 au 14	18	4	75,5	8,4	38	34	<25	1	<20	<2,5	<3	<0,25
20	50	4	4	8,1	13	<20	<25	1	<20	3,4	<3	<0,25

Date de rejet	Bât	Cuve n°	Volume [m³]	Fe+AI (mg/I)	DOMESTIC OF	Zn (mg/l)	Ni (mg/l)	Pb (mg/l)	Cr (mg/l)	Cd (mg/l)
6 au 14	18	4	75,5	2,6	0,30	0,33	<0,25	<0,13	<0,13	<0,13
20	50	4	4	8,0*	<0,13	0.25	<0,25	<0,13	<0.13	<0,13

^{*} Rejet du 20/1 : Compte-tenu du débit de rejet de la cuve et du débit à l'émissaire 17, le critère "Fe+Al" a été respecté au point de rejet.

Appareillage

⇒ CEP - Etafonnage	Page 26
--------------------	---------

⇒ Dispositif de mesure

Page 27

SUIVI DES ETALONNAGES ET DES CEP

janvier 2015

TYPE DE CONTROLE	APPAREIL		DATE	OBSERVATIONS
TYPE DE CONTROLE	APPAREIL	CEP	ETALONNAGE	OBSERVATIONS
	BFSAB ATMOS	22/1		
Activité volumique alpha et bêta des poussières	BFSAB Bagneux	22/1		
atmosphériques	BFSAB Clamart	22/1		
	BFSAB FAR 2	22/1		
	COBENADE	5/1		
Surveillance en temps réel de l'activité dans	Sonde pH du 17, 55 et EU	5/1		
l'égout urbain	Sonde gamma du 17 et 55	5/1		
	Bätiment 18 tranche 1	14/1		
	Bătiment 18 tranche 2	14/1		0
	Bâtiment 18 tranche 3	14/1		
Surveillance en temps	Bâtiment 18 tranche 4	14/1		
réel des rejets gazeux	Bâtiment 10	14/1		
	Bâtiment 50	14/1		
	Bâtiment 53	14/1		
	Bâtiment 58	14/1		
	Bâtiment 52	14/1		

DEFAUTS OU DYSFONCTIONNEMENTS DES DISPOSITIFS DE MESURE

janvier 2015

			DATE ET HEURE			
TYPE DE CONTROLE	PANNE CONSTATEE	N° DE LA FICHE	UTC DES EVENEMENTS SUCCESSIFS	MESURE CONSERVATOIRE		
	Station BAGNEUX « Disjonction de la station »	FE 15/03	Le 1/1 à 23h28 Le 5/1 à 22h18	Remise en service immédiate de l'ensemble des équipements de la station.		
	Station Bagneux Pas de rotation du plateau de la BFSAB le 6/1 à 00h00	FE 15/06	Le 6/1 à 19h05	Le filtre est resté sous la voie de prélèvement du 5/1 à 00h00 au 6/1 à 19h05. Mise en place d'un filtre neuf le 6/1 à 19h05.		
Contrôle temps réel de la radioactivité dans l'environnemenT	Station FAR2 « Défaut colmatage » Pas de rotation du plateau de la BFSAB le 7/1 à 00h00	FE 15/15	Le 7/1 à 09h46	Le filtre est resté sous la voie de prélèvement du 6/1 à 00h00 au 7/1 à 09h46. Mise en place d'un filtre neuf le 7/1 à 09h46.		
	Station Clamart « Défaut filtre percé »	FE 15/08	Le 23/1 à 23h18	Lors de la rotation du plateau de la BFSAB, le porte-filtre ne s'est pas positionné correctement. Remise en place et retour en bon fonctionnement immédiat.		
	Station Bagneux Problème sur le panier de déchargement	FE 15/16	Le 2/2 à 11:05	Le filtre du 29/1 est repassé sous la voie de prélèvement le 2/2 de 00h00 à 11h05. Mise en place d'un filtre neuf le 2/2 à 11:05.		
Contrôle temps réel de la radioactivité dans l'égout urbain	Egout Urbain « Défaut bac décantation »	FE 15/05	Le 16/1 à 16h55	Défaillance de la pompe de relevage n°2 de l'EU. Basculement sur la pompe n°1. Intervention sur la pompe n°2 par la société en charge de la maintenance le 19/1 et retour en bon fonctionnement de la pompe n°2		
Centralisation des données environnementales	RAS					
Surveillance en temps réel des rejets gazeux	Défaut de la balise 5860B	FC 15/064	Le 20/01 à 00h42	Absence d'information sur le débit de ventilation. Soufflage dans les sondes et tuyauteries, changement d'une partie des tuyaux et du liquide dans le manomètre à colonne. Retour en bon fonctionnement le 22/1.		

Légende : FC : Fiche de Constat

FE : Fiche d'Ecart